and a fragrance, and fruits a size and savour denied to them
in their native haunts. It behooves the judicious gardener,
then, not to be too slavish in his attempts to imitate natural
conditions, and to bear in mind that such attempts sometimes
end in failure. The most successful gardening is that which
turns to the best account the plastic organization of the plant,
and enables it to develop and multiply as perfectly as possible.
Experience, coupled with observation and reflection, as well
as the more indirect teachings of tradition, are therefore of
primary importance to the practical gardener.
We propose here to notice briefly the several parts of a flowering plant, and to point out the rationale of the cultural procedures connected with them (see the references to separate articles at the end of article on Botany).
The Root.—The root, though not precluded from access of air, is not directly dependent for its growth on the agency of light. The efficiency of drainage, digging, hoeing and like operations is accounted for by the manner in which they promote aeration of the soil, raise its temperature and remove its stagnant water. Owing to their growth in length at, or rather in the immediate vicinity of, their tips, roots are enabled to traverse long distances by surmounting some obstacles, penetrating others, and insinuating themselves into narrow crevices. As they have no power of absorbing solid materials, their food must be of a liquid or gaseous character. It is taken up from the interstices between the particles of soil exclusively by the finest subdivisions of the fibrils, and in many cases by the extremely delicate thread-like cells which project from them and which are known as root-hairs. The importance of the root-fibres, or “feeding roots” justifies the care which is taken by every good gardener to secure their fullest development, and to prevent as far as possible any injury to them in digging, potting and transplanting, such operations being therefore least prejudicial at seasons when the plant is in a state of comparative rest.
Root-Pruning and Lifting.—In apparent disregard of the general rule just enunciated is the practice of root-pruning fruit trees, when, from the formation of wood being more active than that of fruit, they bear badly. The contrariety is more apparent than real, as the operation consists in the removal of the coarser roots, a process which results in the development of a mass of fine feeding roots. Moreover, there is a generally recognised quasi-antagonism between the vegetative and reproductive processes, so that, other things being equal, anything that checks the one helps forward the other.
Watering.—So far as practical gardening is concerned, feeding by the roots after they have been placed in suitable soil is confined principally to the administration of water and, under certain circumstances, of liquid or chemical manure; and no operations demand more judicious management. The amount of water required, and the times when it should be applied, vary greatly according to the kind of plant and the object for which it is grown, the season, the supply of heat and light, and numerous other conditions, the influence of which is to be learnt by experience only. The same may be said with respect to the application of manures. The watering of pot-plants requires especial care. Water should as a rule be used at a temperature not lower than that of the surrounding atmosphere, and preferably after exposure for some time to the air.
Bottom-Heat.—The “optimum” temperature, or that best suited to promote the general activity of roots, and indeed of all vegetable organs, necessarily varies very much with the nature of the plant, and the circumstances in which it is placed, and is ascertained by practical experience. Artificial heat applied to the roots, called by gardeners “bottom-heat,” is supplied by fermenting materials such as stable manure, leaves, &c., or by hot-water pipes. In winter the temperature of the soil, out of doors, beyond a certain depth is usually higher than that of the atmosphere, so that the roots are in a warmer and more uniform medium than are the upper parts of the plant. Often the escape of heat from the soil is prevented by “mulching,” i.e. by depositing on it a layer of litter, straw, dead leaves and the like.
The Stem and its subdivisions or branches raise to the light and air the leaves and flowers, serve as channels for the passage to them of fluids from the roots, and act as reservoirs for nutritive substances. Their functions in annual, biennial and herbaceous perennial plants cease after the ripening of the seed, whilst in plants of longer duration layer after layer of strong woody tissue is formed, which enables them to bear the strains which the weight of foliage and the exposure to wind entail. The gardener aims usually at producing stout, robust, short-jointed stems, instead of long lanky growths defective in woody tissue. To secure these conditions free exposure to light and air is requisite; but in the case of coppices and woods, or where long straight spars are needed by the forester, plants are allowed to grow thickly so as to ensure development in an upward rather than in a lateral direction. This and like matters will, however, be more fitly considered in dealing hereafter with the buds and their treatment.
Leaves.—The work of the leaves may briefly be stated to consist of the processes of nutrition, respiration and transpiration. Nutri tion (assimilation) by the leaves includes the inhalation of air, and the interaction under the influence of light and in the presence of chlorophyll of the carbon dioxide of the air with the water received from the root, to form carbonaceous food. Respiration in plants, as in other organisms, is a process that goes on by night as well as by day and consists in plants in the breaking up of the complex carbonaceous substances formed by assimilation into less complex and more transportable substances. This process, which is as yet imperfectly understood, is attended by the consumption of oxygen, the liberation of energy in the form of heat, and the exhalation of carbon dioxide and water vapour. Transpiration is loss of water by the plant by evaporation, chiefly from the minute pores or stomata on the leaves. In xerophytic plants (e.g. cacti, euphorbias, &c.) from hot, dry and almost waterless regions where evaporation would be excessive, the leaf surface, and consequently the number of stomata, are reduced to a minimum, as it would be fatal to such plants to exhale vapour as freely in those regions as the broad-leaved plants that grow in places where there is abundance of moisture. Although transpiration is a necessary accompaniment of nutrition, it may easily become excessive, especially where the plant cannot readily recoup itself. In these circumstances “syringing” and “damping down” are of value in cooling the temperature of the air in hothouses and greenhouses and increasing its humidity, thereby checking excessive transpiration. Shading the glass with canvas or washes during the summer months has the same object in view. Syringing is also beneficial in washing away dirt and insects.
Buds.—The recognition of the various forms of buds and their modes of disposition in different plants is a matter of the first consequence in the operations of pruning and training. Flower-buds are produced either on the old wood, i.e. the shoots of the past year’s growth, or on a shoot of the present year. The peach, horse-chestnut, lilac, morello cherry, black currant, rhododendron and many other trees and shrubs develop flower-buds for the next season speedily after blossoming, and these may be stimulated into premature growth. The peculiar short, stunted branches or “spurs” which bear the flower-buds of the pear, apple, plum, sweet cherry, red currant, laburnum, &c., deserve special attention. In the rose, passion-flower, clematis, honeysuckle, &c., in which the flower-buds are developed at the ends of the young shoot of the year, we have examples of plants destitute of flower-buds during the winter.
Propagation by Buds.—The detached leaf-buds (gemmae or bulbils), of some plants are capable under favourable conditions of forming new plants. The edges of the leaves of Bryophyllum calycinum and of Cardamine pratensis, and the growths in the axils of the leaves of Lilium bulbiferum, as well as the fronds of certain ferns (e.g. Asplenium bulbiferum), produce buds of this character. It is a matter of familiar observation that the ends of the shoots of brambles take root when bent down to the ground. In some instances buds form on the roots, and may be used for purposes of propagation, as in the Japan quince, the globe thistle, the sea holly, some sea lavenders, Bocconia, Acanthus, &c. Of the tendency in buds to assume an independent existence gardeners avail themselves in the operations of striking “cuttings,” and making “layers” and “pipings,” as also in budding and grafting. In taking a slip or cutting the gardener removes from the parent plant a shoot having one or more buds or “eyes,” in the case of the vine one only, and places it in a moist and sufficiently warm situation, where, as previously mentioned, undue evaporation from the surface is prevented. For some cuttings, pots filled with light soil, with the protection of the propagating-house and of bell-glasses, are requisite; but for many of our hardy deciduous trees and shrubs no such precautions are necessary, and the insertion of a short shoot about half its length into moist and gritty ground at the proper season suffices to ensure its growth. In the case of the more delicate plants, the formation of roots is preceded by the production from the cambium of the cuttings of a succulent mass of tissue, the callus. It is important in some cases, e.g. zonal pelargoniums, fuchsias, shrubby calceolarias, dahlias, carnations, &c., to retain on the cutting some of its leaves, so as to supply the requisite food for storage in the callus. In other cases, where the buds themselves contain a sufficiency of nutritive matter for the young growths, the retention of leaves is not necessary. The most successful mode of forming roots is to place the cuttings in a mild bottom-heat, which expedites their growth, even in the case of many hardy plants whose cuttings strike roots in the open soil. With some hard-wooded trees, as the common white-thorn, roots cannot be obtained without bottom-heat. It is a general rule throughout plant culture that the activity of the roots shall be in advance of that of the leaves. Cuttings of deciduous trees and shrubs succeed best if planted early in autumn while the soil still retains the solar heat absorbed during summer. For evergreens August or September, and for greenhouse and stove-plants the spring and summer months, are the times most suitable for propagation by cuttings.
Layering consists simply in bending down a branch and keeping it in contact with or buried to a small depth in the soil until roots are formed; the connexion with the parent plant may then be