should be about three times the circumference of the rope which is
to reeve through it, as a 9-in. block for a 3-in. rope; but small ropes
require larger blocks in proportion, as a 4-in. block for a 1-in. rope.
When the work to be done is very important the blocks are much
larger: brace-blocks are more than five times the nominal size of the
brace. Leading-blocks and sheaves in racks are generally smaller
than the blocks through which the ropes pass farther away, which
appears to be a mistake, as more power is lost by friction. A clump-block
should be double the nominal size of the rope. A single strop
may be made by joining the ends of a rope of sufficient length to go
round the block and thimble by a common short splice, which rests
on the crown of the block (the opposite end to the thimble) and is
stretched into place by a jigger; a strand is then passed twice round
the space between the block and the thimble and hove taut by a
Spanish windlass to cramp the parts together ready for the reception
of a small round seizing. The cramping or pinching into shape is
sometimes done by machinery invented by a rigger in Portsmouth
dockyard. The strop may be made the required length by a long
splice, but it would not possess any advantage.
Fig. 44. | Fig. 45. |
Grummet-Strop (fig. 44).—Made by unlaying a piece of rope of the desired size about a foot more than three times the length required for the strop. Place the centre of the rope round the block and thimble; mark with chalk where the parts cross; take one strand out of the rope; bring the two chalk marks together; and cross the strand in the lay on both sides, continuing round and round till the two ends meet the third time; they are then halved, and the upper halves half-knotted and passed over and under the next strands, exactly as one part of a long splice. A piece of worn or well-stretched rope will better retain its shape, upon which success entirely depends. The object is neatness, and if three or multiples of three strops are to be made it is economical.
Double Strop (fig. 45).—Made with one piece of rope, the splice being brought as usual to the crown of the block t, the bights fitting into scores some inches apart, converging to the upper part, above which the thimble receives the bights a, a; and the four parts of the strop are secured at s, s by a round seizing doubly crossed. If the block be not then on the right slew (the shell horizontal or vertical) a union thimble is used with another strop, which produces the desired effect; thus the fore and main brace-blocks, being very large and thin, are required (for appearance) to lie horizontally; a single strop round the yard vertically has a union thimble between it and the double strop round the block. The double strop is used for large blocks; it gives more support to the shell than the single strop and admits of smaller rope being used. Wire rope is much used for block-strops; the fitting is similar. Metal blocks are also used in fixed positions; durability is their chief recommendation. Great care should be taken that they do not chafe the ropes which pass by them as well as those which reeve through.
Selvagee Strop.—Twine, rope-yarn or rope is warped round two or more pegs placed at the desired distance apart, till it assumes the requisite size and strength; the two ends are then knotted or spliced. Temporary firm seizings are applied in several places to bind the parts together before the rope or twine is removed from the pegs, after which it is marled with suitable material. A large strop should be warped round four or six pegs in order to give it the shape in which it is to be used. This description of strop is much stronger and more supple than rope of similar size. Twine strops (covered with duck) are used for boats’ blocks and in similar places requiring neatness. Rope-yarn and spun-yarn strops are used for attaching luff-tackles to shrouds and for many similar purposes. To bring to a shroud or hawser, the centre of the strop is passed round the rope and each part crossed three or four times before hooking the “luff”; a spun-yarn stop above the centre will prevent slipping and is very necessary with wire rope. As an instance of a large selvagee block-strop being used—when the “Melville” was hove down at Chusan (China), the main-purchase-block was double stropped with a selvagee containing 28 parts of 3-in. rope; that would produce 112 parts in the neck, equal to a breaking strain of 280 tons, which is more than four parts of a 19-in cable. The estimated strain it bore was 80 tons.
Stoppers for ordinary running ropes are made by splicing a piece of rope to a bolt or to a hook and thimble, unlaying 3 or 4 ft., tapering it by cutting away some of the yarns, and marling it down securely, with a good whipping also on the end. It is used by taking a half-hitch round the rope which is to be hauled upon, dogging the end up in the lay and holding it by hand. The rope can come through it when hauled, but cannot go back.
Whipping and Pointing.—The end of every working rope should at least be whipped to prevent it fagging out; in ships of war and yachts they are invariably pointed. Whipping is done by placing the end of a piece of twine or knittle-stuff on a rope about an inch from the end, taking three or four turns taut over it (working towards the end); the twine is then laid on the rope again lengthways contrary to the first, leaving a slack bight of twine; and taut turns are repeatedly passed round the rope, over the first end and over the bight, till there are in all six to ten turns; then haul the bight taut through between the turns and cut it close. To point a rope, place a good whipping a few inches from the end, according to size; open out the end entirely; select all the outer yarns and twist them into knittles either singly or two or three together; scrape down and taper the central part, marling it firmly. Turn every alternate knittle and secure the remainder down by a turn of twine or a smooth yarn hitched close up, which acts as the weft in weaving. The knittles are then reversed and another turn of the weft taken, and this is continued till far enough to look well. At the last turn the ends of the knittles which are laid back are led forward over and under the weft and hauled through tightly, making it present a circle of small bights, level with which the core is cut off smoothly. Hawsers and large ropes have a becket formed in their ends during the process of pointing. A piece of 1 to 112 in. rope about 112 to 2 ft. long is spliced into the core by each end while it is open: from four to seven yarns (equal to a strand) are taken at a time and twisted up; open the ends of the becket only sufficient to marry them close in; turn in the twisted yarns between the strands (as splicing) three times, and stop it above and below. Both ends are treated alike; when the pointing is completed a loop a few inches in length will protrude from the end of the rope, which is very useful for reeving it. A hauling line or reeving line should only be rove through the becket as a fair lead. Grafting is very similar to pointing, and frequently done the whole length of a rope, as a side-rope. Pieces of white line more than double the length of the rope, sufficient in number to encircle it, are made up in hanks called foxes; the centre of each is made fast by twine and the weaving process continued as in pointing. Block-strops are sometimes so covered; but, as it causes decay, a small wove mat which can be taken off occasionally is preferable.
Fig. 46. |
Sheep-Shank (fig. 46).—Formed by making a long bight in a topgallant back-stay, or any rope which it is desirable to shorten, and taking a half-hitch near each bend, as at a, a. Rope-yarn stops at b, b are desirable to keep it in place till the strain is brought on it. Wire rope cannot be so treated, and it is injurious to hemp rope that is large and stiff.
Knotting Yarns (fig. 47).—This operation becomes necessary when, a comparatively short piece of junk is to be made into spun-yarn, or large rope into small, which is called twice laid. The end of each yarn is divided, rubbed smooth and married (as for splicing). Two of the divided parts, as c, c and d, d, are passed in opposite directions round all the other parts and knotted. The ends e and f remain passive. The figure is drawn open, but the forks of A and B should be pressed close together, the knot hauled taut and the ends cut off.
Fig. 47. | Fig. 48. |
Butt Slings (fig. 48).—Made of 4-in. rope, each pair being 26 ft. in length, with an eye spliced in one end, through which the other is rove before being placed over one end of the cask; the rope is then passed round the opposite side of the cask and two half-hitches made with the end, forming another running eye, both of which are beaten down taut as the tackle receives the weight. Slings for smaller casks requiring care should be of this description, though of smaller rope, as the cask cannot possibly slip out. Bale Slings are made by splicing the ends of about 3 fathoms of 3-in. rope together, which then looks like a long strop, similar to the double strop represented in fig. 45—the bights t being placed under the cask or bale and one of the