segmentation well marked and the cuticle feebly chitinized and
flexible. Firm chitinous plates are, however, not seldom present on
the prothorax and on the hindmost abdominal segment. The segments
are mostly provided with bristle or spine-bearing tubercles,
whose arrangement has lately been shown by H. G. Dyar to give
partially trustworthy indications of relationship. On either side
of the median line we find two dorsal or trapezoidal tubercles (Nos. 1
and 2), while around the spiracle are grouped (Nos. 3, 4 and 5)
supra-, post-, and pre-spiracular tubercles; below are the sub-spiraculars,
of which there may be two (Nos. 6, 7). The last-named
is situated on the base of the abdominal proleg, and yet another
tubercle (No. 8) may be present on the inner aspect of the proleg.
The spiracles are very conspicuous on the body of a caterpillar,
occurring on the prothorax and on the first eight abdominal segments.
Various tubercles may become coalesced or aborted (fig.
10, B); often, in conjunction with the spines that they bear, the
tubercles serve as a valuable protective armature for the caterpillar.
Much discussion has taken place as to whether the abdominal prolegs
are or are not developed directly from the embryonic abdominal
appendages. In the more lowly families of Lepidoptera, these
organs are provided at the extremity with a complete circle of
hooklets, but in the more highly organized families, only the inner
half of this circle is retained.
The typical Lepidopteran pupa, or “chrysalis,” as shown in the higher families, is an obtect pupa (fig. 11) with no trace of mandibles, the appendages being glued to the body by an exudation, and motion being possible only at three of the abdominal intersegmental regions, the fifth and sixth abdominal segments at most being “free.” A flattened or pointed process—the cremaster—often prominent at the tail-end, may carry one or several hooks (fig. 1, d) which serve to anchor the pupa to its cocoon or to suspend butterfly-pupae from their pad of silk (fig. 11). In the lower families the pupa (fig. 1, c) is only incompletely obtect, and a greater number of abdominal segments can move on one another. The seventh abdominal segment is, in all female lepidopterous pupae, fused with those behind it; in the male “incomplete” pupa this becomes “free” and so may the segments anterior to it, in both sexes, forward to and including the third. The presence of circles of spines on the abdominal segments enables the “incomplete” pupa as a whole to work its way partly out of the cocoon when the time for the emergence of the imago draws near. In the family of the Eriocraniidae (often called the Micropterygidae) the pupa resembles that of a caddis-fly (Trichopteron) being active before the emergence of the imago and provided with strong mandibles by means of which it bites its way out of the cocoon. The importance of the pupa in the phylogeny and classification of the Lepidoptera has lately been demonstrated by T. A. Chapman in a valuable series of papers. Sometimes organs are present in the pupa which are undeveloped in the imago, such as the maxillary palps of the Sesiidae (clearwing moths) and the pectination on the feelers of female Saturniids. E. B. Poulton has drawn attention to the ancestral value of such characters.
Habits and Life-Relations.—The attractiveness of the Lepidoptera and the conspicuous appearance of many of them have led to numerous observations on their habits. The method of feeding of the imago by the suction of liquids has already been mentioned in connexion with the structure of the maxillae and the food-canal. Nectar from flowers is the usual food of moths and butterflies, most of which alight on a blossom before thrusting the proboscis into the corolla of the flower, while others—the hawk moths (Sphingidae) for example—remain poised in the air in front of the flower by means of excessively rapid vibration of the wings, and quickly unrolling the proboscis sip the nectar. Certain flowers with remarkably long tubular corollas seem to be specially adapted for the visits of hawk moths. Some Lepidoptera have other sources of food-supply. The juices of fruit are often sought for, and certain moths can pierce the envelope of a succulent fruit with the rough cuticular outgrowths at the tips of the maxillae, so as to reach the soft tissue within. Animal juices attract other Lepidoptera, which have been observed to suck blood from a wounded mammal; while putrid meat is a familiar “lure” for the gorgeous “purple emperor” butterfly (Apatura iris). The water of streams or the dew on leaves may be frequently sought by Lepidoptera desirous of quenching their thirst, possibly with fatal results, the insects being sometimes drowned in rivers in large numbers. Members of several families of the Lepidoptera—the Hepialidae, Lasiocampidae and Saturniidae, for example—have the maxillae vestigial or aborted, and take no food at all after attaining the winged condition. In such insects there is a complete “division of labour” between the larval and the imaginal instars, the former being entirely devoted to nutritive, the latter to reproductive functions.
Of much interest is the variety displayed among the Lepidoptera in the season and the duration of the various instars. The brightly coloured vanessid butterflies, for example, emerge from the pupa in the late summer and live through the winter in sheltered situations, reappearing to lay their eggs in the succeeding spring. Many species, such as the vapourer moths (Orgyia), lay eggs in the autumn, which remain unhatched through the winter. The eggs of the well-known magpie moths (Abraxas) hatch in autumn and the caterpillar hibernates while still quite small, awaiting for its growth the abundant food-supply to be afforded by the next year’s foliage. The codlin moths (Carpocapsa) pass the winter as resting full-grown larvae, which seek shelter and spin cocoons in autumn, but do not pupate until the succeeding spring. Lastly, many of the Lepidoptera hibernate in the pupal stage; the death’s head moth (Acherontia) and the cabbage-white butterflies (Pieris) are familiar examples of such. The last-named insects afford instances of the “double-brooded” condition, two complete life-cycles being passed through in the year. The flour moth (Ephestia kühniella) is said to have five successive generations in a twelvemonth. On the other hand, certain species whose larvae feed in wood or on roots take two or three years to reach the adult stage.
The rate of growth of the larva depends to a great extent on the nature of its food, and the feeding-habits of caterpillars afford much of interest and variety to the student. The contrast among the Lepidoptera between the suctorial mouth of the imago and the biting jaws of the caterpillar is very striking (cf. figs. 4 and 9), and the profound transformation in structure which takes place is necessarily accompanied by the change from solid to liquid food. The first meal of a young caterpillar is well known to be often its empty egg-shell; from this it turns to feed upon the leaves whereon its provident parent has laid her eggs. But in a few cases hatching takes place in winter or early spring, and the young larvae have then to find a temporary food until their own special plant is available. For example, the caterpillars of some species of Xanthia and other noctuid moths feed at first upon willow-catkins. On the other hand, the caterpillars of the pith moth (Blastodacna) hatched at midsummer, feed on leaves when young, and burrow into woody shoots in autumn. All who have tried to rear caterpillars know that, while those of some species will feed only on one particular species of plant, others will eat several species of the same genus or family, while others again are still less particular, some being able to feed on almost any green herb. It is curious to note how certain species change their food in different localities, a caterpillar confined to one plant in some localities being less particular elsewhere. Individual aberrations in food are of special interest in suggesting the starting-point for a change in the race. When we consider the vast numbers of the Lepidoptera and the structural modifications which they have undergone, their generally faithful adherence to a vegetable diet is remarkable. The vast majority