Page:EB1911 - Volume 16.djvu/603

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
LICHENS
583

ascolichens the fungus portion seems to have become so specialized to its symbiotic mode of life that it is never found growing independently.

The genus Dictyonema has gonidia belonging to the blue-green alga, Scytonema. When the fungus predominates in the thallus it has a bracket-like mode of growth and is found projecting from the branches of trees with the hymenium on the under side. When the alga is predominant it forms felted patches on the bark of trees, the Laudatea form. It is said that the fungus of Cora pavonia and of Dictyonema is identical, the difference being in the nature of the alga.

Mode of Life.

Lichens are found growing in various situations such as bare earth, the bark of trees, dead wood, the surface of stones and rocks, where they have little competition to fear from ordinary plants. As is well known, the lichens are often found in the most exposed and arid situations; in the extreme polar regions these plants are practically the only vegetable forms of life. They owe their capacity to live under the most inhospitable conditions to the dual nature of the organism, and to their capacity to withstand extremes of heat, cold and drought without destruction. On a bare rocky surface a fungus would die from want of organic substance and an alga from drought and want of mineral substances. The lichen, however, is able to grow as the alga supplies organic food material and the fungus has developed a battery of acids (see below) which enable it actually to dissolve the most resistant rocks. It is owing to the power of disintegrating by both mechanical and chemical means the rocks on which they are growing that lichens play such an important part in soil-production. The resistance of lichens is extraordinary; they may be cooled to very low temperatures and heated to high temperatures without being killed. They may be dried so thoroughly that they can easily be reduced to powder yet their vitality is not destroyed but only suspended; on being supplied with water they absorb it rapidly by their general surface and renew their activity. The life of many lichens thus consists of alternating periods of activity when moisture is plentiful, and completely suspended animation under conditions of dryness. Though so little sensitive to drought and extremes of temperature lichens appear to be very easily affected by the presence in the air of noxious substances such as are found in large cities or manufacturing towns. In such districts lichen vegetation is entirely or almost entirely absent. The growth of lichens is extremely slow and many of them take years before they arrive at a spore-bearing stage. Xanthoria parietina has been known to grow for forty-five years before bearing apothecia. This slowness of growth is associated with great length of life and it is probable that individuals found growing on hard mountain rocks or on the trunks of aged trees are many hundreds of years old. It is possible that specimens of such long-lived species as Lecidea geographica actually outrival in longevity the oldest trees.

Relation of Fungus and Alga.

The relation of the two constituents of the lichen have been briefly stated in the beginning of this article. The relation of the fungus to the alga, though it may be described in general terms as one of symbiosis, partakes also somewhat of the nature of parasitism. The algal cells are usually controlled in their growth by the hyphae and are prevented from forming zoospores, and in some cases, as already described, the algal cells are killed sooner or later by the fungus. The fungus seems, on the other hand, to stimulate the algal cells to special development, for those in the lichen are larger than those in the free state, but this is not necessarily adverse to the idea of parasitism, for it is well known that an increase in the size of the cells of the host is often the result of the attacks of parasitic fungi. It must be borne in mind that the exact nutritive relations of the two constituents of the lichen have not been completely elucidated, and that it is very difficult to draw the line between symbiosis and parasitism. The lichen algae are not alone in their specialization to the symbiotic (or parasitic) mode of life, for, as stated earlier, the fungus appear in the majority of cases to have completely lost the power of independent development since with very rare exceptions they are not found alone. They also differ very markedly from free living fungi in their chemical reactions.

Chemistry of Lichens.

The chemistry of lichens is very complex, not yet fully investigated and can only be very briefly dealt with here. The wall of the hyphae of the fungus give in the young state the ordinary reactions of cellulose but older material shows somewhat different reactions, similar to those of the so-called fungus-cellulose. In many lichen-fungi the wall shows various chemical modifications. In numerous lichens, e.g. Cetraria islandica, the wall contains Lichenin (C6H10O5), a gummy substance which swells in cold water and dissolves in hot. Besides this substance, a very similar one, Isolichenin, is also found which is distinguished from lichenin by the fact that it dissolves in cold water and turns blue under the reaction of Iodine. Calcium oxalate is a very common substance, especially in crustaceous lichens; fatty oil in the form of drops or as an infiltration in the membrane is also common; it sometimes occurs in special cells and in extreme cases may represent 90% of the dry substance as in Verrucaria calciseda, Biatora immersa.

Colouring Matters.—Many lichens, as is well known, exhibit a vivid colouring which is usually due to the incrustation of the hyphae with crystalline excretory products. These excretory products have usually an acid nature and hence are generally known as lichen-acids. A large number of these acids, which are mostly benzene derivatives, have been isolated and more or less closely investigated. They are characterized by their insolubility or very slight solubility in water; as examples may be mentioned erythrinic acid in Roccella and Lecanora; evernic acid in species of Evernia, Ramalina and Cladonia; lecanoric acid in Lecanora, Gyrophora. The so-called chrysophanic acid found in Xanthoria (Physcia) parietina is not an acid but a quinone and is better termed physcion.

Colour Reactions of Lichens.—The classification of lichens is unique in the fact that chemical colour reactions are used by many lichenologists in the discrimination of species, and these reactions are included in the specific diagnoses. The substances used as tests in these reactions are caustic potash and calcium hypochlorite; the former being the substance dissolved in an equal weight of water and the latter a saturated extract of bleaching powder in water. These substances are represented by lichenologists by the signs K and CaCl respectively, and the presence or absence of the colour reactions are represented thus, K+, CaCl+, or K−, CaCl−. If the cortical layer should exhibit positive reaction and the medulla of the same species a negative reaction with both reagents, the result is represented thus, K±CaCl±. If a reaction is only produced after the consecutive addition of the two reagents, this is symbolized by K(CaCl)+. A solution of iodine is also used as a test owing to the blue or wine-red colour which the thallus, hymenium or spores may give with this reagent. The objection to the case of these colour reactions is due to the indefinite nature of the reaction and the doubt as to the constant presence of a definite chemical compound in a given species. A yellow colour with caustic potash solution is produced not only by atranoric acid but also by evernic acid, thamnolic acid, &c. Again in the case of Xanthoria parietina vulpinic acid is only to be found in young thalli growing on sandstone; in older forms or in those growing on another substratum it is not to be detected. A similar relation between oil formation and the nature of the substratum has been observed in many lichens. Considerations such as these should make one very wary in placing reliance on these colour reactions for the purposes of classification.

Economic Uses of Lichens.

In the arts, as food and as medicine, many lichens have been highly esteemed, though others are not now employed for the same purposes as formerly.

1. Lichens Used in the Arts.—Of these the most important are such as yield, by maceration in ammonia, the dyes known in commerce as archil, cudbear and litmus. These, however, may with propriety be regarded as but different names for the same pigmentary substance, the variations in the character of which are attributable to the different modes in which the pigments are manufactured. Archil proper is derived from several species of Roccella (e.g. R. Montaguei, R. tinctoria), which yield a rich purple dye; it once fetched a high price in the market. Of considerable value is the “perelle” prepared from Lecanora parella, and used in the preparation of a red or crimson dye. Inferior to this is “cudbear,” derived from Lecanora tartarea, which was formerly very extensively employed by the peasantry of north Europe for giving a scarlet or purple colour to woollen cloths. By adding certain alkalies to the other ingredients used