elaborate investigation. However, the general boundary conditions given in § 16 seem to require no alteration. For this reason it has been possible, for example, to establish a satisfactory theory of metallic reflection, though the propagation of light in the interior of a metal is only imperfectly understood.
One of the fundamental propositions of the theory of electrons is that an electron becomes a centre of radiation whenever its velocity changes either in direction or in magnitude. Thus the production of Röntgen rays, regarded as consisting of very short and irregular electromagnetic impulses, is traced to the impacts of the electrons of the cathode-rays against the anti-cathode, and the lines of an emission spectrum indicate the existence in the radiating body of as many kinds of regular vibrations, the knowledge of which is the ultimate object of our investigations about the structure of the spectra. The shifting of the lines caused, according to Doppler’s law, by a motion of the source of light, may easily be accounted for, as only general principles are involved in the explanation. To a certain extent we can also elucidate the changes in the emission that are observed when the radiating source is exposed to external magnetic forces (“Zeeman-effect”; see Magneto-Optics).
20. Various Kinds of Light-motion.—(a) If the disturbance is represented by
so that the end of the vector P describes an ellipse in a plane perpendicular to the direction of propagation, the light is said to be elliptically, or in special cases circularly, polarized. Light of this kind can be dissolved in many different ways into plane polarized components.
There are cases in which plane waves must be elliptically or circularly polarized in order to show the simple propagation of phase that is expressed by formulae like (5). Instances of this kind occur in bodies having the property of rotating the plane of polarization, either on account of their constitution, or under the influence of a magnetic field. For a given direction of the wave-front there are in general two kinds of elliptic vibrations, each having a definite form, orientation, and direction of motion, and a determinate velocity of propagation. All that has been said about Huygens’s construction applies to these cases.
(b) In a perfect spectroscope a sharp line would only be observed if an endless regular succession of simple harmonic vibrations were admitted into the instrument. In any other case the light will occupy a certain extent in the spectrum, and in order to determine its distribution we have to decompose into simple harmonic functions of the time the components of the disturbance, at a point of the slit for instance. This may be done by means of Fourier’s theorem.
An extreme case is that of the unpolarized light emitted by incandescent solid bodies, consisting of disturbances whose variations are highly irregular, and giving a continuous spectrum. But even with what is commonly called homogeneous light, no perfectly sharp line will be seen. There is no source of light in which the vibrations of the particles remain for ever undisturbed, and a particle will never emit an endless succession of uninterrupted vibrations, but at best a series of vibrations whose form, phase and intensity are changed at irregular intervals. The result must be a broadening of the spectral line.
In cases of this kind one must distinguish between the velocity of propagation of the phase of regular vibrations and the velocity with which the said changes travel onward (see below, iii. Velocity of Light).
(c) In a train of plane waves of definite frequency the disturbance is represented by means of goniometric functions of the time and the coordinates. Since the fundamental equations are linear, there are also solutions in which one or more of the coordinates occur in an exponential function. These solutions are of interest because the motions corresponding to them are widely different from those of which we have thus far spoken. If, for example, the formulae contain the factor
with the positive constant r, the disturbance is no longer periodic with respect to x, but steadily diminishes as x increases. A state of things of this kind, in which the vibrations rapidly die away as we leave the surface, exists in the air adjacent to the face of a glass prism by which a beam of light is totally reflected. It furnishes us an explanation of Newton’s experiment mentioned in § 2. (H. A. L.)
III. Velocity of Light
The fact that light is propagated with a definite speed was first brought out by Ole Roemer at Paris, in 1676, through observations of the eclipses of Jupiter’s satellites, made in different relative positions of the Earth and Jupiter in their respective orbits. It is possible in this way to determine the time required for light to pass across the orbit of the earth. The dimensions of this orbit, or the distance of the sun, being taken as known, the actual speed of light could be computed. Since this computation requires a knowledge of the sun’s distance, which has not yet been acquired with certainty, the actual speed is now determined by experiments made on the earth’s surface. Were it possible by any system of signals to compare with absolute precision the times at two different stations, the speed could be determined by finding how long was required for light to pass from one station to another at the greatest visible distance. But this is impracticable, because no natural agent is under our control by which a signal could be communicated with a greater velocity than that of light. It is therefore necessary to reflect a ray back to the point of observation and to determine the time which the light requires to go and come. Two systems have been devised for this purpose. One is that of Fizeau, in which the vital appliance is a rapidly revolving toothed wheel; the other is that of Foucault, in which the corresponding appliance is a mirror revolving on an axis in, or parallel to, its own plane.
Fig. 1. |
The principle underlying Fizeau’s method is shown in the accompanying figs. 1 and 2. Fig. 1 shows the course of a ray of light which, emanating from a luminous point L, strikes the plane surface of a plate of glass M at an angle of about 45°. A fraction of the light is reflected from the two surfaces of Fizeau. the glass to a distant reflector R, the plane of which is at right angles to the course of the ray. The latter is thus reflected back on its own course and, passing through the glass M on its return, reaches a point E behind the glass. An observer with his eye at E looking through the glass sees the return ray as a distant luminous point in the reflector R, after the light has passed over the course in both directions.
In actual practice it is necessary to interpose the object glass of a telescope at a point O, at a distance from M nearly equal to its focal length. The function of this appliance is to render the diverging rays, shown by the dotted lines, nearly parallel, in order that more light may reach R and be thrown back again. But the principle may be conceived without respect to the telescope, all the rays being ignored except the central one, which passes over the course we have described.
Fig. 2. |
Conceiving the apparatus arranged in such a way that the observer sees the light reflected from the distant mirror R, a fine toothed wheel WX is placed immediately in front of the glass M, with its plane perpendicular to the course of the ray, in such a way that the ray goes out and returns through an opening between two adjacent teeth. This wheel is represented in section by WX in fig. 1, and a part of its circumference, with the teeth as viewed by the observer, is shown in fig. 2. We conceive that the latter sees the luminous point between two of the teeth at K. Now, conceive that the wheel is set in revolution. The ray is then interrupted as every tooth passes, so that what is sent out is a succession of flashes. Conceive that the speed of the mirror is such that while the flash is going to the distant mirror and returning again, each tooth of the wheel takes the place of an opening between the teeth. Then each flash sent out will, on its return, be intercepted by the adjacent tooth, and will therefore become invisible. If the speed be now doubled, so that the teeth pass at intervals equal to the time required for the light to go and come, each flash sent through an opening will return through the adjacent opening, and will therefore be seen with full brightness. If the speed be continuously increased the result will be successive disappearances and reappearances of the light, according as a tooth is or is not interposed when the ray reaches the apparatus on its return. The computation of the time of passage and return is then very simple. The speed of the wheel being known, the number of teeth passing in one second can be computed. The order of the disappearance, or the number of teeth which have passed while the light is going and coming, being also determined in each case, the interval of time is computed by a simple formula.