Dioptric Mirror.—The next important improvement in lighthouse
optical work was the invention of the dioptric spherical mirror by
Mr (afterwards Sir) J. T. Chance in 1862. The zones or prisms are
generated round a vertical axis and divided into segments. This
form of mirror is still in general use (figs. 36 and 37).
Fig. 29.—Early Reflector and Lamp (1763). | Fig. 30.—Modern Parabolic Reflector. |
Azimuthal Condensing Prisms.—Previous to 1850 all apparatus were designed to emit light of equal power in every azimuth either constantly or periodically. The only exception was where a light was situated on a stretch of coast where a mirror could be placed behind the flame to utilize the rays, which would otherwise pass landward, and reflect them back, passing through the flame and lens in a seaward direction. In order to increase the intensity of lights in certain azimuths T. Stevenson devised his azimuthal condensing prisms which, in various forms and methods of application, have been largely used for the purpose of strengthening the light rays in required directions as, for instance, where coloured sectors are provided. Applications of this system will be referred to subsequently.
Optical Glass for Lighthouses.—In the early days of lens lights the only glass used for the prisms was made in France at the St Gobain and Premontré works, which have long been celebrated for the high quality of optical glass produced. The early dioptric lights erected in the United Kingdom, some 13 in all, were made by Messrs Cookson of South Shields, who were instructed by Léonor Fresnel, the brother of Augustin. At first they tried to mould the lens and then to grind it out of one thick sheet of glass. The successors of the Cookson firm abandoned the manufacture of lenses in 1845, and the firm of Letourneau & Lepaute of Paris again became the monopolists. In 1850 Messrs Chance Bros. & Co. of Birmingham began the manufacture of optical glass, assisted by M. Tabouret, a French expert who had been a colleague of Augustin Fresnel himself. The first light made by the firm was shown at the Great Exhibition of 1851, since when numerous dioptric apparatus have been constructed by Messrs Chance, who are, at this time, the only manufacturers of lighthouse glass in the United Kingdom. Most of the glass used for apparatus constructed in France is manufactured at St Gobain. Some of the glass used by German constructors is made at Rathenow in Prussia and Goslar in the Harz.
The glass generally employed for lighthouse optics has for its refractive index a mean value of μ = 1.51, the corresponding critical angle being 41° 30′. Messrs Chance have used dense flint glass for the upper and lower refracting rings of high angle lenses and for dioptric mirrors in certain cases. This glass has a value of μ = l.62 with critical angle 38° 5′.
Fig. 31. Buffon’s Lens. |
Fig. 32. Fresnel’s Annular Lens. |
Fig. 33. Fresnel’s Lens Belt. |
Fig. 34.—Fresnel’s Revolving Apparatus at Cordouan Lighthouse. |
Occulting Lights.—During the last 25 years of the 19th century the disadvantages of fixed lights became more and more apparent. At the present day the practice of installing such, except occasionally in the case of the smaller and less important of harbour or river lights, has practically ceased. The necessity for providing a distinctive characteristic for every light when possible has led to the conversion of many of the fixed-light apparatus of earlier years into occulting lights, and often to their supersession by more modern and powerful flashing apparatus. An occulting apparatus in general use consists of a cylindrical screen, fitting over the burner, rapidly lowered and raised by means of a cam-wheel at stated intervals. The cam-wheel is actuated by means of a weight or spring clock. Varying characteristics may be procured by means of such a contrivance—single, double, triple or other systems of occultation. The eclipses or periods of darkness bear much the same relation to the times of illumination as do the flashes to the eclipses in a revolving or flashing light. In the case of a first-order fixed light the cost of conversion to an occulting characteristic does not exceed £250 to £300. With apparatus illuminated by gas the occultations may be produced by successively raising and lowering the gas at stated intervals. Another form of occulting mechanism employed consists of a series of vertical screens mounted on a carriage and revolving round the burner. The carriage is rotated on rollers or ball bearings or carried upon a small mercury float. The usual driving mechanism employed is a spring clock. “Otter” screens are used in cases when it is desired to produce different periods of occultations in two or more positions in azimuth in order to differentiate sectors marking shoals, &c. The screens are of sheet metal blacked and arranged vertically, some what in the manner of the laths of a venetian blind, and operated by mechanical means.
Leading Lights.—In the case of lights designed to act as a lead through a narrow channel or as direction lights, it is undesirable to employ a flashing apparatus. Fixed-light optics are employed to meet such cases, and are generally fitted with occulting mechanism. A typical apparatus of this description is that at Gage Roads, Fremantle, West Australia (fig. 38). The occulting bright light covers the fairway, and is flanked by sectors of occulting red and green light marking dangers and intensified by vertical condensing prisms. A good example of a holophotal direction light was exhibited at the 1900 Paris Exhibition, and afterwards erected at Suzac lighthouse (France). The light consists of an annular lens 500 mm. focal distance, of 180° horizontal angle and 157° vertical, with a mirror of 180° at the back. The lens throws a red beam of about 412° amplitude in azimuth, and 50,000 candle-power over a narrow channel. The illuminant is an incandescent petroleum vapour burner. Holophotal direction lenses of this type can only be applied where the sector to be marked is of comparatively small angle. Silvered metallic mirrors of parabolic form are also used for the purpose. The use of single direction lights frequently renders the construction of separate towers for leading lights unnecessary.
If two distinct lights are employed to indicate the line of navigation through a channel or between dangers they must be sufficiently far apart to afford a good lead, the front or seaward light being situated at a lower elevation than the rear or landward one.
Coloured Lights.—Colour is used as seldom as possible as a distinction, entailing as it does a considerable reduction in the power of the light. It is necessary in some instances for differentiating sectors over dangers and for harbour lighting purposes. The use of coloured lights as alternating flashes for lighthouse lights is not to be commended, on account of the unequal absorption of the coloured