Page:EB1911 - Volume 16.djvu/663

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ILLUMINANTS]
LIGHTHOUSE
  641


The intrinsic brightness of incandescent burners generally may be taken as being equivalent to from 30 candles to 40 candles per sq. cm. of the vertical section of the incandescent mantle.

In the case of wick burners, the intrinsic brightness varies, according to the number of wicks and the type of burner from about 3.5 candles to about 12 candles per sq. cm., the value being at its maximum with the larger type of burner. The luminous intensity of a beam from a dioptric apparatus is, ceteris paribus, proportional to the intrinsic brightness of the luminous source of flame, and not of the total luminous intensity. The intrinsic brightness of the flame of oil burners increases only slightly with their focal diameter, consequently while the consumption of oil increases the efficiency of the burner for a given apparatus decreases. The illuminating power of the condensed beam can only be improved to a slight extent, and, in fact, is occasionally decreased, by increasing the number of wicks in the burner. The same argument applies to the case of multiple ring and multiple jet gas burners which, notwithstanding their large total intensity, have comparatively small intrinsic brightness. The economy of the new system is instanced by the case of the Eddystone bi-form apparatus, which with the concentric 6-wick burner consuming 2500 gals. of oil per annum, gave a total intensity of 79,250 candles. Under the new régime the intensity is 292,000 candles, the oil consumption being practically halved.

Incandescent Oil Gas Burners.—It has been mentioned that incandescence with low-pressure coal gas produces flames of comparatively small intrinsic brightness. Coal gas cannot be compressed beyond a small extent without considerable injurious condensation and other accompanying evils. Recourse has therefore been had to compressed oil gas, which is capable of undergoing compression to 10 or 12 atmospheres with little detriment, and can conveniently be stored in portable reservoirs. The burner employed resembles the ordinary Bunsen burner with incandescent mantle, and the rate of consumption of gas is 27.5 cub. in. per hour per candle. A reducing valve is used for supplying the gas to the burner at constant pressure. The burners can be left unattended for considerable periods. The system was first adopted in France, where it is installed at eight lighthouses, among others the Ar’men Rock light, and has been extended to other parts of the world including several stations in Scotland and England. The mantles used in France are of 35 mm. diameter. The 35 mm. mantle gives a candle-power of 400, with an intrinsic brightness of 20 candles per sq. cm.

The use of oil gas necessitates the erection of gas works at the lighthouse or its periodical supply in portable reservoirs from a neighbouring station. A complete gas works plant costs about £800. The annual expenditure for gas lighting in France does not exceed £72 per light where works are installed, or £32 where gas is supplied from elsewhere. In the case of petroleum vapour lighting the annual cost of oil amounts to about £26 per station.

Acetylene.—The high illuminating power and intrinsic brightness of the flame of acetylene makes it a very suitable illuminant for lighthouses and beacons, providing certain difficulties attending its use can be overcome. At Grangemouth an unattended 21-day beacon has been illuminated by an acetylene flame for some years with considerable success, and a beacon light designed to run unattended for six months was established on Bedout Island in Western Australia in 1910. Acetylene has also been used in the United States, Germany, the Argentine, China, Canada, &c., for lighthouse and beacon illumination. Many buoys and beacons on the German and Dutch coasts have been supplied with oil gas mixed with 20% of acetylene, thereby obtaining an increase of over 100% in illuminating intensity. In France an incandescent burner consuming acetylene gas mixed with air has been installed at the Chassiron lighthouse (1902). The French Lighthouse Service has perfected an incandescent acetylene burner with a 55 mm. mantle having an intensity of over 2000 candle-power, with intrinsic brightness of 60 candles per sq. cm.

Electricity.—The first installation of electric light for lighthouse purposes in England took place in 1858 at the South Foreland, where the Trinity House established a temporary plant for experimental purposes. This installation was followed in 1862 by the adoption of the illuminant at the Dungeness lighthouse, where it remained in service until the year 1874 when oil was substituted for electricity. The earliest of the permanent installations now existing in England is that at Souter Point which was illuminated in 1871. There are in England four important coast lights illuminated by electricity, and one, viz. Isle of May, in Scotland. Of the former St Catherine’s, in the Isle of Wight, and the Lizard are the most powerful. Electricity was substituted as an illuminant for the then existing oil light at St Catherine’s in 1888. The optical apparatus consisted of a second-order 16-sided revolving lens, which was transferred to the South Foreland station in 1904, and a new second order (700 mm.) four-sided optic with a vertical angle of 139°, exhibiting a flash of .21 second duration every 5 seconds substituted for it. A fixed holophote is placed inside the optic in the dark or landward arc, and at the focal plane of the lamp. This holophote condenses the rays from the arc falling upon it into a pencil of small angle, which is directed horizontally upon a series of reflecting prisms which again bend the light and throw it downwards through an aperture in the lantern floor on to another series of prisms, which latter direct the rays seaward in the form of a sector of fixed red light at a lower level in the tower. A somewhat similar arrangement exists at Souter Point lighthouse.

The apparatus installed at the Lizard in 1903 is similar to that at St Catherine’s, but has no arrangement for producing a subsidiary sector light. The flash is of .13 seconds duration every 3 seconds. The apparatus replaced the two fixed electric lights erected in 1878.

Fig. 45.—Isle of May Apparatus.

The Isle of May lighthouse, at the mouth of the Firth of Forth, was first illuminated by electricity in 1886. The optical apparatus consists of a second-order fixed-light lens with reflecting prisms, and is surrounded by a revolving system of vertical condensing prisms which split up the vertically condensed beam of light into 8 separate beams of 3° in azimuth. The prisms are so arranged that the apparatus, making one complete revolution in the minute, produces a group characteristic of 4 flashes in quick succession every 30 seconds (fig. 45). The fixed light is not of the ordinary Fresnel section, the refracting portion being confined to an angle of 10°, and the remainder of the vertical section consisting of reflecting prisms.

In France the old south lighthouse at La Hève was lit by electricity in 1863. This installation was followed in 1865 by a similar one at the north lighthouse. In 1910 there were thirteen important coast lights in France illuminated by electricity. In other parts of the world, Macquarie lighthouse, Sydney, was lit by electricity in 1883; Tino, in the gulf of Spezia, in 1885; and Navesink lighthouse, near the entrance to New York Bay, in 1898. Electric apparatus were also installed at the lighthouse at Port Said in 1869, on the opening of the canal; Odessa in 1871; and at the Rothersand, North Sea, in 1885. There are several other lights in various parts of the world illuminated by this agency.

Incandescent electric lighting has been adopted for the illumination of certain light-vessels in the United States, and a few small harbour and port lights, beacons and buoys.

Table VI. gives particulars of some of the more important electric lighthouses of the world.

Electric Lighthouse Installations in France.—A list of the thirteen lighthouses on the French coast equipped with electric light installations will be found in table VI. It has been already mentioned that the two lighthouses at La Hève were lit by electric light in 1863 and 1865. These installations were followed within a few years by the establishment of electricity as illuminant at Gris-Nez. In 1882 M. Allard, the then director-general of the French Lighthouse Service, prepared a scheme for the electric lighting of the French littoral by means of 46 lights distributed more or less uniformly along the coast-line. All the apparatus were to be of the same general type, the optics consisting of a fixed belt of 300 mm. focal distance, around the outside of which revolved a system of 24 faces of vertical lenses. These vertical panels condensed the belt of fixed light into beams of 3° amplitude in azimuth, producing flashes of about 3/4 sec. duration. To illuminate the near sea the vertical divergence of the lower prisms of the fixed belt was artificially increased. These optics are very similar to that in use at the Souter Point lighthouse, Sunderland. The intensities obtained were 120,000 candles in the case of fixed lights and 900,000 candles with flashing lights. As a result of a nautical inquiry held in 1886, at which date the lights of Dunkerque, Calais, Gris-Nez, La Canche, Baleines and