Page:EB1911 - Volume 16.djvu/678

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
656
LIGHTING
 [GAS


flame itself. A coal-gas flame consumed in an atmospheric burner under the conditions necessary to develop its maximum heating power could be utilized to raise to incandescence particles having a higher emissivity for light than carbon. This led to the gradual evolution of incandescent gas lighting.

Long before the birth of the Welsbach mantle it had been known that when certain unburnable refractory substances were heated to a high temperature they emitted light, and Goldsworthy Gurney in 1826 showed that a cylinder of lime could be brought to a state of dazzling Incan-
descent
gas light.
brilliancy by the flame of the oxy-hydrogen blowpipe, a fact which was utilized by Thomas Drummond shortly afterwards in connexion with the Ordnance Survey of Ireland. The mass of a lime cylinder is, however, relatively very considerable, and consequently an excessive amount of heat has to be brought to bear upon it, owing to radiation and conduction tending to dissipate the heat. This is seen by holding in the flame of an atmospheric burner a coil of thick platinum wire, the result being that the wire is heated to a dull red only. With wire of medium thickness a bright red heat is soon attained, and a thin wire glows with a vivid incandescence, and will even melt in certain parts of the flame. Attempts were accordingly made to reduce the mass of the material heated, and this form of lighting was tried in the streets of Paris, buttons of zirconia and magnesia being heated by an oxy-coal-gas flame, but the attempt was soon abandoned owing to the high cost and constant renewals needed. In 1835 W. H. Fox Talbot discovered that even the feeble flame of a spirit lamp is sufficient to heat lime to incandescence, provided the lime be in a sufficiently fine state of division. This condition he fulfilled by soaking blotting-paper in a solution of a calcium salt and then incinerating it. Up to 1848, when J. P. Gillard introduced the intermittent process of making water-gas, the spirit flame and oxy-hydrogen flame were alone free from carbon particles. Desiring to use the water-gas for lighting as well as heating purposes Gillard made a mantle of fine platinum gauze to fit over the flame, and for a time obtained excellent results, but after a few days the lighting value of the mantle fell away gradually until it became useless, owing to the wire becoming eroded on the surface by the flame gases. This idea has been revived at intervals, but the trouble of erosion has always led to failure.

The next important stage in the history of gas lighting was the discovery by R. W. von Bunsen about 1855 of the atmospheric burner, in which a non-luminous coal-gas flame is obtained by causing the coal-gas before its combustion to mix with a certain amount of air. This simple appliance has opened up for coal-gas a sphere of usefulness for heating purposes as important as its use for lighting. After the introduction of the atmospheric burner the idea of the incandescent mantle was revived early in the eighties by the Clamond basket and a resuscitation of the platinum mantle. The Clamond basket or mantle, as shown at the Crystal Palace exhibition of 1882–1883, consisted of a cone of threads of calcined magnesia. A mixture of magnesium hydrate and acetate, converted into a paste or cream by means of water, was pressed through holes in a plate so as to form threads, and these, after being moulded to the required shape, were ignited. The heat decomposed the acetate to form a luting material which glued the particles of magnesium oxide produced into a solid mass, whilst the hydrate gave off water and became oxide. The basket was supported with its apex downwards in a little platinum wire cage, and a mixture of coal-gas and air was driven into it under pressure from an inverted blowpipe burner above it.

The Welsbach mantle was suggested by the fact that Auer von Welsbach had been carrying out researches on the rare earths, with constant use of the spectroscope. Desiring to obtain a better effect than that produced by heating his material on a platinum wire, he immersed cotton in a solution of the metallic salt, and after burning off the organic matter found that a replica of the original thread, composed of the oxide of the metal, was left, and that it glowed brightly in the flame. From this he evolved the idea of utilizing a fabric of cotton soaked in a solution of a metallic salt for lighting purposes, and in 1885 he patented his first commercial mantle. The oxides used in these mantles were zirconia, lanthania, and yttria, but these were so fragile as to be practically useless, whilst the light they emitted was very poor. Later he found that the oxide of thorium—thoria—in conjunction with other rare earth oxides, not only increased the light-giving powers of the mantle, but added considerably to its strength, and the use of this oxide was protected by his 1886 patent. Even these mantles were very unsatisfactory until it was found that the purity of the oxides had a wonderful effect upon the amount of light, and finally came the great discovery that it was a trace of ceria in admixture with the thoria that gave the mantle the marvellous power of emitting light.

Certain factors limit the number of oxides that can be used in the manufacture of an incandescent mantle. Atmospheric influences must not have any action upon them, and they must be sufficiently refractory not to melt or even soften to any extent at the temperature of the flame; they must also be non-volatile, whilst the shrinkage during the process of “burning off” must not be excessive. The following table gives the light-emissivity from pure and commercial samples of the oxides which most nearly conform to the above requirements; the effect of impurity upon the lighting power will be seen to be most marked.

  Pure. Commercial.
Metals—    
 Zirconia 1.5 3.1
 Thoria 0.5 6.0
Earth metals—    
 Cerite earths—Ceria 0.4 0.9
       Lanthania   6.0
 Yttrite earths—Yttria   3.2
       Erbia 0.6 1.7
 Common earths—Chromium oxide 0.4 0.4
        Alumina 0.6 0.6
Alkaline earth metals—    
 Baryta 3.3 3.3
 Strontia 5.2 5.5
 Magnesia 5.0 5.0

Of these oxides thoria, when tested for shrinkage, duration and strength, stands pre-eminent. It is also possible to employ zirconia and alumina. Zirconia has the drawback that in the hottest part of the flame it is liable not only to shrinkage and semi-fusion, but also to slow volatilization, and the same objections hold good with respect to alumina. With thoria the shrinkage is smaller than with any other known substance, and it possesses very high refractory powers.

The factor which gives thoria its pre-eminence as the basis of the mantle is that in the conversion of thorium nitrate into thorium oxide by heat, an enormous expansion takes place, the oxide occupying more than ten times the volume of the nitrate. This means that the mass is highly spongy, and contains an enormous number of little air-cells which must render it an excellent non-conductor. A mantle made with thoria alone gives practically no light. But the power of light-emissivity is awakened by the addition of a small trace of ceria; and careful experiment shows that as ceria is added to it little by little, the light which the mantle emits grows greater and greater, until the ratio of 99% of thoria and 1% of ceria is reached, when the maximum illuminating effect is obtained. The further addition of ceria causes gradual diminution of light, until, when with some 10% of ceria has been added, the light given by the mantle is again almost inappreciable. When cerium nitrate is converted by heat into cerium oxide, the expansion which takes place is practically nil, the ceria obtained from a gramme of the nitrate occupying about the same space as the original nitrate. Thus, although by weight the ratio of ceria to thoria is as 1:99, by volume it is only as 1:999.

The most successful form of mantle is made by taking a cylinder of cotton net about 8 in. long, and soaking it in a solution of nitrates of the requisite metals until the microscopic fibres of the cotton are entirely filled Manufacture of mantles. with liquid. A longer soaking is not advantageous, as the acid nature of the liquid employed tends to weaken the fabric and render it more delicate to handle. The cotton is then wrung out to free it from the excess of liquid, and one end is sewn together with an asbestos thread, a loop of the same material or of thin platinum wire being fixed across the constricted portion to provide a support by which the mantle may be held by the carrying rod, which is either external to the mantle, or (as is most often the case) fixed centrally in the burner head. It is then ready for “burning off,” a process in which the organic matter is removed and the nitrates are