Page:EB1911 - Volume 16.djvu/772

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
750
LIQUID GASES


into a solid mass, having a pale bluish tint, showing by reflection all the absorption bands of the liquid. It is remarkable that the same absorption bands occur in the compressed gas. Dewar gives the melting-point as 38° absolute, and the density at the boiling-point of hydrogen as 1.4526. The refractive index of the liquid for the D sodium ray is 1.2236.

Ozone.—This gas is easily liquefied by the use of liquid air. The liquid obtained is intensely blue, and on allowing the temperature to rise, boils and explodes about −120° C. About this temperature it may be dissolved in bisulphide of carbon to a faint blue solution. The liquid ozone seems to be more magnetic than liquid oxygen.

Nitrogen forms a transparent colourless liquid, having a density of 0.8042 at its boiling-point, which is −195.5° C. The refractive index for the D line is 1.2053. Evaporated under diminished pressure the liquid becomes solid at a temperature of −215° C., melting under a pressure of 90 mm. The density of the solid at the boiling-point of hydrogen is 1.0265.

Air.—Seeing that the boiling-points of nitrogen and oxygen are different, it might be expected that on the liquefaction of atmospheric air the two elements would appear as two separate liquids. Such, however, is not the case; they come down simultaneously as one homogeneous liquid. Prepared on a large scale, liquid air may contain as much as 50% of oxygen when collected in open vacuum-vessels, but since nitrogen is the more volatile it boils off first, and as the liquid gradually becomes richer in oxygen the temperature at which it boils rises from about −192° C. to about −182° C. At the former temperature it has a density of about 0.910. It is a non-conductor of electricity. Properly protected from external heat, and subjected to high exhaustion, liquid air becomes a stiff transparent jelly-like mass, a magma of solid nitrogen containing liquid oxygen, which may indeed be extracted from it by means of a magnet, or by rapid rotation of the vacuum vessel in imitation of a centrifugal machine. The temperature of this solid under a vacuum of about 14 mm. is −216°. At the still lower temperatures attainable by the aid of liquid hydrogen it becomes a white solid, having, like solid oxygen, a faint blue tint. The refractive index of liquid air is 1.2068.

Fluorine, prepared in the free state by Moissan’s method of electrolysing a solution of potassium fluoride in anhydrous hydrofluoric acid, was liquefied in the laboratories of the Royal Institution, London, in 1897. Exposed to the temperature of quietly-boiling liquid oxygen, the gas did not change its state, though it lost much of its chemical activity, and ceased to attack glass. But a very small vacuum formed over the oxygen was sufficient to determine liquefaction, a result which was also obtained by cooling the gas to the temperature of freshly-made liquid air boiling at atmospheric pressure. Hence the boiling-point is fixed at about −187° C. The liquid is of a clear yellow colour, possessing great mobility. Its density is 1.14, and its capillarity rather less than that of liquid oxygen. The liquid, when examined in a thickness of 1 cm., does not show any absorption bands, and it is not attracted by a magnet. Cooled in liquid hydrogen it is frozen to a white solid, melting at about 40° abs.

Hydrogen.—Liquid hydrogen is the lightest liquid known to the chemist, having a density slightly less than 0.07 as compared with water, and being six times lighter than liquid marsh-gas, which is next in order of lightness. One litre weighs only 70 grammes, and 1 gramme occupies a volume of 14-15 cc. In spite of its extreme lightness, however, it is easily seen, has a well-defined meniscus and drops well. At its boiling-point the liquid is only 55 times denser than the vapour it is giving off, whereas liquid oxygen in similar condition is 258 times denser than its vapour, and nitrogen 177 times. Its atomic volume is about 14.3, that of liquid oxygen being 13.7, and that of liquid nitrogen 16.6, at their respective boiling-points. Its latent heat of vaporization about the boiling-point is about 121 gramme-calories, and the latent heat of fluidity cannot exceed 16 units, but may be less. Hydrogen appears to have the same specific heat in the liquid as in the gaseous state, about 3.4. Its surface tension is exceedingly low, about one-fifth that of liquid air at its boiling-point, or one-thirty-fifth that of water at ordinary temperatures, and this is the reason that bubbles formed in the liquid are so small as to give it an opalescent appearance during ebullition. The liquid is without colour, and gives no absorption spectrum. Electric sparks taken in the liquid between platinum poles give a spectrum showing the hydrogen lines C and F bright on a background of continuous spectrum. Its refractive index at the boiling-point has theoretically the value 1.11. It was measured by determining the relative difference of focus for a parallel beam of light sent through a spherical vacuum vessel filled successively with water, liquid oxygen and liquid hydrogen; the result obtained was 1.12. Liquid hydrogen is a non-conductor of electricity. The precise determination of its boiling-point is a matter of some difficulty. The first results obtained from the use of a platinum resistance thermometer gave −238° C., while a similar thermometer made with an alloy of rhodium-platinum indicated a value 8 degrees lower. Later, a gold thermometer indicated about −249° C., while with an iron one the result was only −210° C. It was thus evident that electrical resistance thermometers are not to be trusted at these low temperatures, since the laws correlating resistance and temperature are not known for temperatures at and below the boiling-point of hydrogen, though they are certainly not the same as those which hold good higher up the thermometric scale. The same remarks apply to the use of thermo-electric junctions at such exceptional temperatures. Recourse was therefore had to a constant-volume hydrogen thermometer, working under reduced pressure, experiments having shown that such a thermometer, filled with either a simple or a compound gas (e.g. oxygen or carbonic acid) at an initial pressure somewhat less than one atmosphere, may be relied upon to determine temperatures down to the respective boiling-points of the gases with which they are filled. The result obtained was −252° C. Subsequently various other determinations were carried out in thermometers filled with hydrogen derived from different sources, and also with helium, the average value given by the experiments being −252.5° C. (See “The Boiling Point of Liquid Hydrogen determined by Hydrogen and Helium Gas Thermometers,” Proc. Roy. Soc., 7th February 1901.) The critical temperature is about 30° absolute (−243° C.), and the critical pressure about 15 atmospheres. Hydrogen has not only the lowest critical temperature of all the old permanent gases, but it has the lowest critical pressure. Given a sufficiently low temperature, therefore, it is the easiest gas to liquefy so far as pressure is concerned. Solid hydrogen has a temperature about 4° less. By exhaustion under reduced pressure a still lower depth of cold may be attained, and a steady temperature reached less than 16° above the zero of absolute temperature. By the use of high exhaustion, and the most stringent precautions to prevent the influx of heat, a temperature of 13° absolute (−260° C.) may be reached. This is the lowest steady temperature which can be maintained by the evaporation of solid hydrogen. At this temperature the solid has a density of about 0.077. Solid hydrogen presents no metallic characteristics, such as were predicted for it by Faraday, Dumas, Graham and other chemists and neither it nor the liquid is magnetic.

The Approach to the Absolute Zero.—The achievement of Kamerlingh Onnes has brought about the realization of a temperature removed only 3° from the absolute zero, and the question naturally suggests itself whether there is any probability of a still closer approach to that point. The answer is that if, as is not impossible, there exists a gas, as yet unisolated, which has an atomic weight one-half that of helium, that gas, liquefied in turn by the aid of liquid helium, would render that approach possible, though the experimental difficulties of the operation would be enormous and perhaps prohibitive. The results of experiments bearing on this question and of theory based on them are shown in table II. The third column shows the critical temperature of the gas which can be liquefied by continuous expansion through a regenerative cooling apparatus, the operation being started from the initial temperature shown in the second column, while the fourth column gives the temperature of the resulting liquid. It will be seen that by the use of liquid or solid hydrogen as a cooling agent, it should be possible to liquefy a body having a critical temperature of about 6° to 8° on the absolute scale, and a boiling point of about 4° or 5°, while with the aid of liquid helium at an initial temperature of 5° we could liquefy a body having a critical temperature of 2° and a boiling point of 1°.

Table II.
Substance. Initial
Temperature.
Abs. Degrees.
Critical
Temperature.
Abs. Degrees.
Boiling Points.
Abs. Degrees.
(Low red heat) 760 304 195 (CO2)
(52° C.) 325 130  86 (Air)
Liquid air under exhaustion  75  30  20 (H)
Liquid hydrogen  20  8  5 (He)
Solid hydrogen  15  6  4
Liquid helium  5  2  1

It is to be remarked, however, that even so the physicist would not have attained the absolute zero, and he can scarcely hope ever to do so. It is true he would only be a very short distance from it, but it must be remembered that in a thermodynamic sense one degree low down the scale, say at 10° absolute, is equivalent to 30° at the ordinary temperature, and as the experimenter gets to lower and lower temperatures, the difficulties of further advance increase, not in arithmetical but in geometrical progression. Thus the step between the liquefaction of air and that of hydrogen is, thermodynamically and practically, greater than that between the liquefaction of chlorine and that of air, but the number of degrees of temperature that separates