Page:EB1911 - Volume 16.djvu/778

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
756
LIQUID GASES


absorption and subsequent emission as a phosphorescent glow, and that if the plate could be developed at a low temperature it would show no effect, the photographic action taking place subsequently through an internal phosphorescence in the film during the time it is heating up. With regard to the transparency of bodies to the Röntgen radiation at low temperatures, small tubes of the same bore, filled with liquid argon and chlorine, potassium, phosphorus, aluminium, silicon and sulphur, were exposed at the temperature of liquid air (in order to keep the argon and chlorine solid), in front of a photographic plate shielded with a sheet of aluminium, to an X-ray bulb. The sequence of the elements as mentioned represents the order of increasing opacity observed in the shadows. Sodium and liquid oxygen and air, nitrous and nitric oxides, proved much more transparent than chlorine. Tubes of potassium, argon and liquid chlorine showed no very marked difference of density on the photographic plates. It appears that argon is relatively more opaque to the Röntgen radiation than either oxygen, nitrogen or sodium, and is on a level with potassium, chlorine, phosphorus, aluminium and sulphur. This fact may be regarded as supporting the view that the atomic weight of argon is twice its density relative to hydrogen, since in general the opacity of elements in the solid state increases with the atomic weight.

Phosphorescence.—Phosphorescing sulphides of calcium, which are luminous at ordinary temperatures, and whose emission of light is increased by heating, cease to be luminous if cooled to −80° C. But their light energy is merely rendered latent, not destroyed, by such cold, and they still retain the capacity of taking in light energy at the low temperature, to be evolved again when they are warmed. At the temperature of liquid air many bodies become phosphorescent which do not exhibit the phenomenon at all, or only to a very slight extent, at ordinary temperatures, e.g. ivory, indiarubber, egg-shells, feathers, cottonwool, paper, milk, gelatine, white of egg, &c. Of definite chemical compounds, the platinocyanides among the inorganic bodies seem to yield the most brilliant effects. Crystals of ammonium platinocyanide, if stimulated by exposure to the ultra-violet radiation of the electric arc—or better still of a mercury vapour lamp in quartz—while kept moistened with liquid air, may be seen in the dark to glow faintly so long as they are kept cold, but become exceedingly brilliant when the liquid air evaporates and the temperature rises. Among organic bodies the phenomenon is particularly well marked with the ketonic compounds and others of the same type. The chloro-, bromo-, iodo-, sulpho- and nitro-compounds show very little effect as a rule. The activity of the alcohols, which is usually considerable, is destroyed by the addition of a little iodine. Coloured salts, &c., are mostly inferior in activity to white ones. When the lower temperature of liquid hydrogen is employed there is a great increase in phosphorescence under light stimulation as compared with that observed with liquid air. The radio-active bodies, like radium, which exhibit self-luminosity in the dark, maintain that luminosity unimpaired when cooled in liquid hydrogen.

Some crystals become for a time self-luminous when placed in liquid hydrogen, because the high electric stimulation due to the cooling causes actual electric discharges between the crystal molecules. This phenomenon is very pronounced with nitrate of uranium and some platinocyanides, and cooling such crystals even to the temperature of liquid air is sufficient to develop marked electrical and luminous effects, which are again observed, when the crystal is taken out of the liquid, during its return to normal temperature. Since both liquid hydrogen and liquid air are good electrical insulators, the fact that electric discharges take place in them proves that the electric potential generated by the cooling must be very high. A crystal of nitrate of uranium indeed gets so highly charged electrically that it refuses to sink in liquid air, although its density is 2.8 times greater, but sticks to the side of the vacuum vessel, and requires for its displacement a distinct pull on the silk thread to which it is attached. Such a crystal quickly removes cloudiness from liquid air by attracting all the suspended particles to its surface, just as a fog is cleared out of air by electrification. It is interesting to observe that neither fused nitrate of uranium nor its solution in absolute alcohol shows any of the remarkable effects of the crystalline state on cooling.

Cohesion.—The physical force known as cohesion is greatly increased by low temperatures. This fact is of much interest in connexion with two conflicting theories of matter. Lord Kelvin’s view was that the forces that hold together the ultimate particles of bodies may be accounted for without assuming any other forces than that of gravitation, or any other law than the Newtonian. An opposite view is that the phenomena of cohesion, chemical union, &c., or the general phenomena of the aggregation of molecules, depend on the molecular vibrations as a physical cause (Tolver Preston, Physics of the Ether, p. 64). Hence at the zero of absolute temperature, this vibrating energy being in complete abeyance, the phenomena of cohesion should cease to exist and matter generally be reduced to an incoherent heap of “cosmic dust.” This second view receives no support from experiment. Atmospheric air, for instance, frozen at the temperature of liquid hydrogen, is a hard solid, the strength of which gives no hint that with a further cooling of some 20 degrees it would crumble into powder. On the contrary, the lower the scale of temperature is descended, the more powerful become the forces which hold together the particles of matter. A spiral of fusible metal, which at ordinary temperatures cannot support the weight of an ounce without being straightened out, will, when cooled to the temperature of liquid oxygen, and so long as it remains in that cooled condition, support several pounds and vibrate like a steel spring. Similarly a bell of fusible metal at −182° C. gives a distinct metallic ring when struck. Balls of iron, lead, tin, ivory, &c., thus cooled, exhibit an increased rebound when dropped from a height; an indiarubber ball, on the other hand, becomes brittle, and is smashed to atoms by a very moderate fall. Tables XII. and XIII., which give the mean results of a large number of experiments, show the increased breaking stress gained by metals while they are cooled to the temperature of liquid oxygen.

Table XII.Breaking Stress in Pounds of Metallic Wires 0.098 inch
in diameter.
  +15° C. −182° C.
Steel (soft) 420 700
Iron 320 670
Copper 200 300
Brass 310 440
German silver 470 600
Gold 255 340
Silver 330 420
Table XIII.Breaking Stress in Pounds of Cast Metallic Test-pieces;
diameter of rod-0.2 inch.
  +15° C. −182° C.
Tin 200 390
Lead  77 170
Zinc  35  26
Mercury  0  31
Bismuth  60  30
Antimony  61  30
Solder 300 645
Fusible, metal (Wood) 140 450

In the second series of experiments the test-pieces were 2 in. long and were all cast in the same mould. It will be noticed that in the cases of zinc, bismuth and antimony the results appear to be abnormal, but it may be pointed out that it is difficult to get uniform castings of crystalline bodies, and it is probable that by cooling such stresses are set up in some set of cleavage planes as to render rupture comparatively easy. In the case of strong steel springs the rigidity modulus does not appear to be greatly affected by cold, for although a number were examined, no measurable differences could be detected in their elongation under repeated additions of the same load. No quantitative experiments have been made on the cohesive properties of the metals at the temperature of boiling hydrogen (−252°), owing to the serious cost that would be involved. A lead wire cooled in liquid hydrogen did not become brittle, as it could be bent backwards and forwards in the liquid.

Electrical Resistivity.—The first experiments on the conductivity of metals at low temperatures appear to have been