Page:EB1911 - Volume 16.djvu/809

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
LITHOGRAPHY
787


Mrs Herbert Railton, have been treated by the Eberle system of etching described below, and although an infinitesimal loss of quality may have arisen, such as occurs when a copper etching is steel faced, some 2000 to 3000 copies were printed without further deterioration, and an edition of vignetted sketches was secured, far in advance of anything that could have been attained from the usual screen or half-toned blocks.

Grained paper is much used in the ordinary lithographic studio for work such as the hill shading of maps that can be done without much working up, but the velvety effects that in the hands of Louis Haghe and his contemporaries were so conspicuous, cannot be secured by this method. The effects referred to were obtained by much patient work of a “tinter,” who practically laid a ground on which the more experienced and artistic craftsman did his work either by scraping or accentuation. Where fine rich blacks are needed, artists will do well to read the notes on the “aquatint” and “wash” methods described by Senefelder in his well-known treatise, and afterwards practised with great skill by Hulemandel.

Lithography is of great service in educational matters, as its use for diagrams, wall pictures and maps is very general; nor does the influence end with schooldays, for in the form of pictures at a moderate price it brings art into homes and lives that need brightening, and even in the form of posters on the much-abused hoardings does something for those who have to spend much of their time in the streets of great cities.

According to the census of 1901, 14,686 people in the United Kingdom found their occupation within the trade, while according to a Home Office return (1906), 20,367 persons other than lithographic printers were employed by the firms carrying on the business. As it may be assumed that an equal number are employed in France, Germany, the United States of America and the world at large, it is clear that a vast industrial army is employed in a trade that, like letterpress printing, has a very beneficial influence upon those engaged in it.

Technical Details.—The following description of the various methods of lithography is such as may be considered of interest to the general reader, but the serious student who will require formulas and more precise directions will do well to consult one of the numerous text-books on the subject.

Stone and Stone Substitutes.—The quality of stone first used by Alois Senefelder, and discovered by him at the village of Solenhofen in Bavaria, still remains unsurpassed. This deposit, which covers a very large area and underlies the villages of Solenhofen, Moernsheim and Langenaltheim, has often been described, sometimes for interested motives, as nearly exhausted; but a visit in 1906 revealed that the output—considerable as it had been during a period little short of a century—was very unimportant when compared to the great mass of carbonaceous limestone existing in the neighbourhood. The strong point in favour of this source of supply, in addition to its unrivalled quality, is the evenness of its stratification, and the fact that after the removal of the surface deposits, which are very thin, the stones come out of large size, in thickness of 3 to 5 in., and thus just suited for lithographic purposes and needing only to be wrought in the vertical direction. Other deposits of suitable stone have been found in France, Spain, Italy and Greece, but transit and the absence of suitable stratification have restricted them to little more than local use. Beyond this, few of the deposits other than in the neighbourhood of Solenhofen have been of the exact degree of density necessary, and the heavier varieties do not receive the grease with sufficient readiness. The desire to find other sources of supply has been stimulated by the social conditions existing in southern Bavaria, for the quarries are largely owned by peasant proprietors, who have very well-defined business habits of their own which make transactions difficult. Among other things, they will seldom supply the highest grades and the largest sizes to those who will not take their proportion of lower quality and smaller sizes; and this, in view of the very expensive transit down the Rhine to Rotterdam, with a railway journey at one end and a sea journey at the other, is a source of difficulty to the importer in other countries.

The earliest substitute for lithographic stone was zinc, which has been used from early days and is now more in demand than ever; it requires very careful printing as the grease only penetrates the material to a very slight extent, and the same must be said in regard to the water. From this cause, when not in experienced hands, trouble is likely to arise; and when this has occurred, remedial methods are much more difficult than with stones. When put away for storage, a dry place is very essential, as corrosion is easily set up. At first the plates were quite thick, and almost invariably grained by a zinc “muller” and acid; now a bath of acid is more generally used, and the operation is known as “passing,” while the plates are quite thin, which renders them suitable for bending round the cylinders of rotary machines.

So far we have been dealing with plain zinc, but variations are caused, either by the oxidization of the surface or by coating the plate with a composition closely allied to lithographic stone and applied in a form of semi-solution. This class of plate was first invented by Messrs C. & E. Layton, and a modification was invented by Messrs Wezel and Naumann of Leipzig, who brought its use to a high pitch of perfection for transferred work such as Christmas cards. A treatment of iron plates by exposing them to a high temperature has recently been patented, and has had some measure of success, while the Parker printing plate, which is practically a sheet of zinc so treated as to secure greater porosity and freedom from oxidization, is rapidly securing a good position as a stone substitute.

Preparation of the Stones.—In this department the cleanliness so necessary right through the lithographic process must be carefully observed, and a leading point is to secure a level surface and to ensure that the front and back of the stone are strictly parallel, i.e. that the stones stand the test of both the straight edge and the callipers. A good plan to ensure evenness on the surface is to mark the front with two diagonal lines of some non-greasy substance till the top stone (which should not be too small, and should be constantly revolved on the larger one) has entirely removed them. The application of the straight edge from time to time will end in securing the desired flatness, on which so much of the future printing quality depends. The usual method is to rub out with sand, and then rub with pumice and polish with water of Ayr or snake stone. For chalk work, the further work of graining has to be done by revolving a small stone muller on the surface with exceedingly fine sand or powdered glass. Many appliances (some very expensive) have been devised for doing the principal part of this work by machine—none more effective than those methods by which a disk of about 12 in. is kept revolving on a rod attached to the ceiling, guided by hand over all parts of the stone; but for large surfaces the ceiling needs to be rather high so as to allow of a long expanding rod reaching the surface at a moderate angle. When this machine is fitted with friction disk driving, very wide variations of speed are possible, and the machine can be driven so slowly and evenly as to secure a very fair (but not first class) grain, in addition to speedy rubbing out, which is the chief aim of the apparatus.

Preparing a Subject in Chalk or Chalk and Tints.—This branch of work is much less in demand than formerly. A grey stone having been selected and finely grained with sand or powdered glass passed through a sieve of 80 to 120 meshes to the lineal inch, and the artist having made his tracing, this tracing is reversed upon the stone with the interposition of a piece of paper coated with red chalk, and the chalk side towards the surface; the lines on the tracing are then gone over with a tracing point, so that a reproduction in red chalk is left upon the stone. It will then be desirable to secure a stock of pointed Lemercier chalks of at least two grades, hard and soft: the pointing is a matter that requires experience, and is done by the worker drawing a sharp pen-knife towards him in a slicing manner as though trying to put a point upon a piece of cheese. Care should be taken that the falling pieces are gathered into a box, or they may do irreparable mischief to the work. The work of outlining is done with No. 1 or hard chalk, and until experience is gained it will be well to depend chiefly on this grade, securing rich dark effects by tinting or going over the stone in various directions and then finishing with lithographic ink where absolute blacks are required. This ink (Vanhymbeck’s or Lemercier’s are two good makes) needs careful preparation, the method being to warm a saucer and rub the ink dry upon it, then add a little distilled water and incorporate with the finger. It is of great importance not to use any ink left over for the next day, but always to have a fresh daily supply.

When the drawing is thus completed, it will require what is termed etching, by which the parts intended to receive the printing ink, and already protected by an acid-resisting grease, will be left above the unprotected surface. The acid and gum mixture varies in accordance with the quality of the work and the character of the stone. A patiently executed specimen will, for instance, stand more etching than a hastily drawn one; while a grey stone will require more of the nitric acid than a yellow one. This is one of the most important tasks that a lithographer has to perform. A proportion of 1.5 parts of acid to 100 parts of a strong solution of gum arabic will be found to be approximately what is required, but the exact proportion must be settled by experience, a safe course being to watch the action that occurs when a small quantity is placed on the unused margin of the stone. Many put the etching mixture on with a flat camel-hair brush, which should be of good width to avoid streaks. The present writer’s own preference is to pour the mixture on to the stone when it is in a slanting position; or it is perhaps better to have an etching trough, a strong box lined with pitch, with bearers at the bottom to prevent the stone coming in contact with it, and a hole through which the diluted acid may pass away for subsequent use. The etching is then done with acid and water poured over the stone while in a sloping position, and the subsequent pouring of a solution of gum arabic completes the preparation. The late Mr William Simpson, whose Crimean lithographs are well known, once stated at the Society of Arts that in his opinion Mr Louis Haghe’s reproduction