Page:EB1911 - Volume 16.djvu/894

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
872
LOGARITHM


were first issued. It is probable, therefore, that Briggs’s copy contained no reference to the change, and it is even possible that the “Admonitio” may have been added after Briggs had communicated with Napier. As special attention has not been drawn to the fact that some copies have the “Admonitio” and some have not, different writers have assumed that Briggs did or did not know of the promise contained in the “Admonitio” according as it was present or absent in the copies they had themselves referred to, and this has given rise to some confusion. It may also be remarked that the date frequently assigned to Briggs’s first visit to Napier is 1616, and not 1615 as stated above, the reason being that Napier was generally supposed to have died in 1618 until Mark Napier showed that the true date was 1617. When the Descriptio was published Briggs was fifty-seven years of age, and the remaining seventeen years of his life were devoted with steady enthusiasm to extend the utility of Napier’s great invention.

The only other mathematician besides Napier who grasped the idea on which the use of logarithm depends and applied it to the construction of a table is Justus Byrgius (Jobst Bürgi), whose work Arithmetische und geometrische Progress-Tabulen ... was published at Prague in 1620, six years after the publication of the Descriptio of Napier. This table distinctly involves the principle of logarithms and may be described as a modified table of antilogarithms. It consists of two series of numbers, the one being an arithmetical and the other a geometrical progression: thus

0, 1,0000 0000
10, 1,0001 0000
20, 1,0002 0001
.   .   .   .  
990, 1,0099 4967
.   .   .   .  

In the arithmetical column the numbers increase by 10, in the geometrical column each number is derived from its predecessor by multiplication by 1.0001. Thus the number 10x in the arithmetical column corresponds to 108 (1.0001)x in the geometrical column; the intermediate numbers being obtained by interpolation. If we divide the numbers in the geometrical column by 108 the correspondence is between 10x and (1.0001)x, and the table then becomes one of antilogarithms, the base being (1.0001)1/10, viz. for example (l.0001)1/10·990 = 1.00994967. The table extends to 230270 in the arithmetical column, and it is shown that 230270.022 corresponds to 9.9999 9999 or 109 in the geometrical column; this last result showing that (1.0001)23027.022 = 10. The first contemporary mention of Byrgius’s table occurs on page 11 of the “Praecepta” prefixed to Kepler’s Tabulae Radolphinae (1627); his words are: “apices logistici J. Byrgio multis annis ante editionem Neperianam viam praeiverent ad hos ipsissimos logarithmos. Etsi homo cunctator et secretorum suorum custos foetum in partu destituit, non ad usus publicos educavit.” Another reference to Byrgius occurs in a work by Benjamin Bramer, the brother-in-law and pupil of Byrgius, who, writing in 1630, says that the latter constructed his table twenty years ago or more.[1]

As regards priority of publication, Napier has the advantage by six years, and even fully accepting Bramer’s statement, there are grounds for believing that Napier’s work dates from a still earlier period.

The power of 10, which occurs as a factor in the tables of both Napier and Byrgius, was rendered necessary by the fact that the decimal point was not yet in use. Omitting this factor in the case of both tables, the connexion between N a number and L its “logarithm” is

N = (e−1)L (Napier),   L =(1.0001)1/10N (Byrgius),

viz. Napier gives logarithms to base e−1, Byrgius gives antilogarithms to base (1.0001)1/10.

There is indirect evidence that Napier was occupied with logarithms as early as 1594, for in a letter to P. Crügerus from Kepler, dated September 9, 1624 (Frisch’s Kepler, vi. 47), there occurs the sentence: “Nihil autem supra Neperianam rationem esse puto: etsi quidem Scotus quidam literis ad Tychonem 1594 scriptis jam spem fecit Canonis illius Mirifici.” It is here distinctly stated that some Scotsman in the year 1594, in a letter to Tycho Brahe, gave him some hope of the logarithms; and as Kepler joined Tycho after his expulsion from the island of Huen, and had been so closely associated with him in his work, he would be likely to be correct in any assertion of this kind. In connexion with Kepler’s statement the following story, told by Anthony wood in the Athenae Oxonienses, is of some importance:—

“It must be now known, that one Dr Craig, a Scotchman ... coming out of Denmark into his own country, called upon Joh. Neper, Baron of Mercheston, near Edinburgh, and told him, among other discourses, of a new invention in Denmark (by Longomontanus, as ’tis said), to save the tedious multiplication and division in astronomical calculations. Neper being solicitous to know farther of him concerning this matter, he could give no other account of it than that it was by proportional numbers. Which hint Neper taking, he desired him at his return to call upon him again. Craig, after some weeks had passed, did so, and Neper then showed him a rude draught of what he called Canon mirabilis logarithmorum. which draught, with some alterations, he printing in 1614, it came forthwith into the hands of our author Briggs, and into those of Will. Oughtred, from whom the relation of this matter came.”

This story, though obviously untrue in some respects, gives valuable information by connecting Dr Craig with Napier and Longomontanus, who was Tycho Brahe’s assistant. Dr Craig was John Craig, the third son of Thomas Craig, who was one of the colleagues of Sir Archibald Napier, John Napier’s father, in the office of justice-depute. Between John Craig and John Napier a friendship sprang up which may have been due to their common taste for mathematics. There are extant three letters from Dr John Craig to Tycho Brahe, which show that he was on the most friendly terms with him. In the first letter, of which the date is not given, Craig says that Sir William Stuart has safely delivered to him, “about the beginning of last winter,” the book which he sent him. Now Mark Napier found in the library of the university of Edinburgh a mathematical work bearing a sentence in Latin which he translates, “To Doctor John Craig of Edinburgh, in Scotland, a most illustrious man, highly gifted with various and excellent learning, professor of medicine, and exceedingly skilled in the mathematics, Tycho Brahe hath sent this gift, and with his own hand written this at Uraniburg, 2d November 1588.” As Sir William Stuart was sent to Denmark to arrange the preliminaries of King James’s marriage, and returned to Edinburgh on the 15th of November 1588, it would seem probable that this was the volume referred to by Craig. It appears from Craig’s letter, to which we may therefore assign the date 1589, that, five years before, he had made an attempt to reach Uranienburg, but had been baffled by the storms and rocks of Norway, and that ever since then he had been longing to visit Tycho. Now John Craig was physician to the king, and in 1590 James VI. spent some days at Uranienburg, before returning to Scotland from his matrimonial expedition. It seems not unlikely therefore that Craig may have accompanied the king in his visit to Uranienburg.[2] In any case it is certain that Craig was a friend and correspondent of Tycho’s, and it is probable that he was the “Scotus quidam.”

We may infer therefore that as early as 1594 Napier had communicated to some one, probably John Craig, his hope of being able to effect a simplification in the processes of arithmetic. Everything tends to show that the invention of logarithms

  1. Frisch’s Kepleri opera omnia, ii. 834. Frisch thinks Bramer possibly relied on Kepler’s statement quoted in the text (“Quibus forte confisus Kepleri verbis Benj. Bramer....”). See also vol. vii. p. 298.

    The claims of Byrgius are discussed in Kästner’s Geschichte der Mathematik, ii. 375, and iii. 14; Montucla’s Histoire des mathématiques, ii. 10; Delambre’s Histoire de l’astronomie moderne, i. 560; de Morgan’s article on “Tables” in the English Cyclopaedia; Mark Napier’s Memoirs of John Napier of Merchiston (1834), p. 392, and Cantor’s Geschichte der Mathematik, ii. (1892), 662. See also Gieswald, Justus Byrg als Mathematiker und dessen Einleitung in seine Logarithmen (Danzig, 1856).
  2. See Mark Napier’s Memoirs of John Napier of Merchiston (1834), p. 362.