Page:EB1911 - Volume 16.djvu/899

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
LOGAU
877


Briggian logarithms of primes up to 1100, so that the logarithms of all composite numbers whose greatest prime factor does not exceed this number may be found by simple addition; and Wolfram’s table gives 48-decimal hyperbolic logarithms of primes up to 10,009. By means of these tables and of a factor table we may very readily obtain the Briggian logarithm of a number to 61 or a less number of places or of its hyperbolic logarithm to 48 or a less number of places in the following manner. Suppose the hyperbolic logarithm of the prime number 43,867 required. Multiplying by 50, we have 50 × 43,867 = 2,193,350, and on looking in Burckhardt’s Table des diviseurs for a number near to this which shall have no prime factor greater than 10,009, it appears that

2,193,349 = 23 × 47 × 2029;

thus

43,867 = 1/50 (23 × 47 × 2029 + 1),

and therefore

loge 43,867 = loge 23 + loge 47 + loge 2029 − loge 50
+ 1 1/2 1 + 1/3 1 − &c.
2,193,349 (2,193,349)2 (2,193,349)3

The first term of the series in the second line is

0.00000   04559   23795   07319   6286;

dividing this by 2 × 2,193,349 we obtain

0.00000   00000   00103   93325   3457,

and the third term is

0.00000   00000   00000   00003   1590,

so that the series =

0.00000   04559   23691   13997   4419;

whence, taking out the logarithms from Wolfram’s table,

loge 43,867 = 10.68891   76079   60568   10191   3661.

The principle of the method is to multiply the given prime (supposed to consist of 4, 5 or 6 figures) by such a factor that the product may be a number within the range of the factor tables, and such that, when it is increased by 1 or 2, the prime factors may all be within the range of the logarithmic tables. The logarithm is then obtained by use of the formula

loge (x + d) = loge x + d 1/2 d2 + 1/3 d3 − &c.,
x x2 x3

in which of course the object is to render d/x as small as possible. If the logarithm required is Briggian, the value of the series is to be multiplied by M.

If the number is incommensurable or consists of more than seven figures, we can take the first seven figures of it (or multiply and divide the result by any factor, and take the first seven figures of the result) and proceed as before. An application to the hyperbolic logarithm of π is given by Burckhardt in the introduction to his Table des diviseurs for the second million.

The best general method of calculating logarithms consists, in its simplest form, in resolving the number whose logarithm is required into factors of the form 1 − .1rn, where n is one of the nine digits; and making use of subsidiary tables of logarithms of factors of this form. For example, suppose the logarithm of 543839 required to twelve places. Dividing by 105 and by 5 the number becomes 1.087678, and resolving this number into factors of the form 1 − .1rn we find that

543839 = 105 × 5(1 − .128) (1 − .146) (1 − .156) (1 − .163) (1 − .173)
  × (1 − .185) (1 − .197) (1 − .1109) (1 − .1113) (1 − .1122),

where 1 − 128 denotes 1 − .08, 1 − .146 denotes 1 − .0006, &c., and so on. All that is required therefore in order to obtain the logarithm of any number is a table of logarithms, to the required number of places, of .n, .9n, .99n, .999n, &c., for n = 1, 2, 3, ... 9.

The resolution of a number into factors of the above form is easily performed. Taking, for example, the number 1.087678, the object is to destroy the significant figure 8 in the second place of decimals; this is effected by multiplying the number by 1-.08, that is, by subtracting from the number eight times itself advanced two places, and we thus obtain 1.00066376. To destroy the first 6 multiply by 1 − .0006 giving 1.000063361744, and multiplying successively by 1 − .00006 and 1 − .000003, we obtain 1.000000357932, and it is clear that these last six significant figures represent without any further work the remaining factors required. In the corresponding antilogarithmic process the number is expressed as a product of factors of the form 1 + .1nx.

This method of calculating logarithms by the resolution of numbers into factors of the form 1 − .1rn is generally known as Weddle’s method, having been published by him in The Mathematician for November 1845, and the corresponding method for antilogarithms by means of factors of the form 1 + (.1)rn is known by the name of Hearn, who published it in the same journal for 1847. In 1846 Peter Gray constructed a new table to 12 places, in which the factors were of the form 1 − (.01)rn, so that n had the values 1, 2, ... 99; and subsequently he constructed a similar table for factors of the form 1 + (.01)rn. He also devised a method of applying a table of Hearn’s form (i.e. of factors of the form 1 + .1rn) to the construction of logarithms, and calculated a table of logarithms of factors of the form 1 + (.001)rn to 24 places. This was published in 1876 under the title Tables for the formation of logarithms and antilogarithms to twenty-four or any less number of places, and contains the most complete and useful application of the method, with many improvements in points of detail. Taking as an example the calculation of the Briggian logarithm of the number 43,867, whose hyperbolic logarithm has been calculated above, we multiply it by 3, giving 131,601, and find by Gray’s process that the factors of 1.31601 are

(1) 1.316 (5) 1.(001)4002
(2) 1.000007 (6) 1.(001)5602
(3) 1.(001)2598 (7) 1.(001)6412
(4) 1.(001)3780 (8) 1.(001)7340

Taking the logarithms from Gray’s tables we obtain the required logarithm by addition as follows:—

522 878 745 280 337 562 704 972 = colog 3
119 255 889 277 936 685 553 913 = log (1)
   3 040 050 733 157 610 239 = log (2)
    259 708 022 525 453 597 = log (3)
      338 749 695 752 424 = log (4)
          868 588 964 = log (5)
          261 445 278 = log (6)
            178 929 = log (7)
              148 = log (8)
4.642 137 934 655 780 757 288 464 = log10 43,867

In Shortrede’s Tables there are tables of logarithms and factors of the form 1 ± (.01)r n to 16 places and of the form 1 ± (.1)r n to 25 places; and in his Tables de Logarithmes à 27 Décimales (Paris, 1867) Fédor Thoman gives tables of logarithms of factors of the form 1 ± .1r n. In the Messenger of Mathematics, vol. iii. pp. 66-92, 1873, Henry Wace gave a simple and clear account of both the logarithmic and antilogarithmic processes, with tables of both Briggian and hyperbolic logarithms of factors of the form 1 ± .1rn to 20 places.

Although the method is usually known by the names of Weddle and Hearn, it is really, in its essential features, due to Briggs, who gave in the Arithmetica logarithmica of 1624 a table of the logarithms of 1 + .1rn up to r = 9 to 15 places of decimals. It was first formally proposed as an independent method, with great improvements, by Robert Flower in The Radix, a new way of making Logarithms, which was published in 1771; and Leonelli, in his Supplement logarithmique (1802–1803), already noticed, referred to Flower and reproduced some of his tables. A complete bibliography of this method has been given by A. J. Ellis in a paper “on the potential radix as a means of calculating logarithms,” printed in the Proceedings of the Royal Society, vol. xxxi., 1881, pp. 401–407, and vol. xxxii., 1881, pp. 377–379. Reference should also be made to Hoppe’s Tafeln zur dreissigstelligen logarithmischen Rechnung (Leipzig, 1876), which give in a somewhat modified form a table of the hyperbolic logarithm of 1 + .1rn.

The preceding methods are only appropriate for the calculation of isolated logarithms. If a complete table had to be reconstructed, or calculated to more places, it would undoubtedly be most convenient to employ the method of differences. A full account of this method as applied to the calculation of the Tables du Cadastre is given by Lefort in vol. iv. of the Annales de l’Observatoire de Paris.  (J. W. L. G.) 


LOGAU, FRIEDRICH, Freiherr von (1604–1655), German epigrammatist, was born at Brockut, near Nimptsch, in Silesia, in June 1604. He was educated at the gymnasium of Brieg and subsequently studied law. He then entered the service of the duke of Brieg. In 1644 he was made “ducal councillor.” He died at Liegnitz on the 24th of July 1655. Logau’s epigrams, which appeared in two collections under the pseudonym “Salomon von Golaw” (an anagram of his real name) in 1638 (Erstes Hundert Teutscher Reimensprüche) and 1654 (Deutscher Sinngedichte drei Tausend), show a marvellous range and variety of expression. He had suffered bitterly under the adverse conditions of the time; but his satire is not merely the outcome of personal feeling. In the turbulent age of the Thirty Years’ War he was one of the few men who preserved intact his intellectual integrity and judged his contemporaries fairly. He satirized with unsparing hand the court life, the useless bloodshed of the war, the lack of national pride in the German people, and their slavish imitation of the French in customs, dress and speech. He belonged to the Fruchtbringende Gesellschaft under the name Der Verkleinernde, and regarded himself as a follower of Martin Opitz; but he did not allow such ties to influence his independence or originality.

Logau’s Sinngedichte were edited in 1759 by G. E. Lessing and K. W. Ramler, who first drew attention to their merits; a second