Page:EB1911 - Volume 16.djvu/96

From Wikisource
Jump to navigation Jump to search
This page has been validated.
76
LAGRANGE

He had in the meantime gratified a long felt desire by a visit to Paris, where he enjoyed the stimulating delight of conversing with such mathematicians as A. C. Clairault, d’Alembert, Condorcet and the Abbé Marie. Illness prevented him from visiting London. The post of director of the mathematical department of the Berlin Academy (of which he had been a member since 1759) becoming vacant by the removal of Euler to St Petersburg, the latter and d’Alembert united to recommend Lagrange as his successor. Euler’s eulogium was enhanced by his desire to quit Berlin, d’Alembert’s by his dread of a royal command to repair thither; and the result was that an invitation, conveying the wish of the “greatest king in Europe” to have the “greatest mathematician” at his court, was sent to Turin. On the 6th of November 1766, Lagrange was installed in his new position, with a salary of 6000 francs, ample leisure for scientific research, and royal favour sufficient to secure him respect without exciting envy. The national jealousy of foreigners, was at first a source of annoyance to him; but such prejudices were gradually disarmed by the inoffensiveness of his demeanour. We are told that the universal example of his colleagues, rather than any desire for female society, impelled him to matrimony; his choice being a lady of the Conti family, who, by his request, joined him at Berlin. Soon after marriage his wife was attacked by a lingering illness, to which she succumbed, Lagrange devoting all his time, and a considerable store of medical knowledge, to her care.

The long series of memoirs—some of them complete treatises of great moment in the history of science—communicated by Lagrange to the Berlin Academy between the years 1767 and 1787 were not the only fruits of his exile. His Mécanique analytique, in which his genius most fully displayed itself, was produced during the same period. This great work was the perfect realization of a design conceived by the author almost in boyhood, and clearly sketched in his first published essay.[1] Its scope may be briefly described as the reduction of the theory of mechanics to certain general formulae, from the simple development of which should be derived the equations necessary for the solution of each separate problem.[2] From the fundamental principle of virtual velocities, which thus acquired a new significance, Lagrange deduced, with the aid of the calculus of variations, the whole system of mechanical truths, by processes so elegant, lucid and harmonious as to constitute, in Sir William Hamilton’s words, “a kind of scientific poem.” This unification of method was one of matter also. By his mode of regarding a liquid as a material system characterized by the unshackled mobility of its minutest parts, the separation between the mechanics of matter in different forms of aggregation finally disappeared, and the fundamental equation of forces was for the first time extended to hydrostatics and hydrodynamics.[3] Thus a universal science of matter and motion was derived, by an unbroken sequence of deduction, from one radical principle; and analytical mechanics assumed the clear and complete form of logical perfection which it now wears.

A publisher having with some difficulty been found, the book appeared at Paris in 1788 under the supervision of A. M. Legendre. But before that time Lagrange himself was on the spot. After the death of Frederick the Great, his presence was competed for by the courts of France, Spain and Naples, and a residence in Berlin having ceased to possess any attraction for him, he removed to Paris in 1787. Marie Antoinette warmly patronized him. He was lodged in the Louvre, received the grant of an income equal to that he had hitherto enjoyed, and, with the title of “veteran pensioner” in lieu of that of “foreign associate” (conferred in 1772), the right of voting at the deliberations of the Academy. In the midst of these distinctions, a profound melancholy seized upon him. His mathematical enthusiasm was for the time completely quenched, and during two years the printed volume of his Mécanique, which he had seen only in manuscript, lay unopened beside him. He relieved his dejection with miscellaneous studies, especially with that of chemistry, which, in the new form given to it by Lavoisier, he found “aisée comme l’algèbre.” The Revolution roused him once more to activity and cheerfulness. Curiosity impelled him to remain and watch the progress of such a novel phenomenon; but curiosity was changed into dismay as the terrific character of the phenomenon unfolded itself. He now bitterly regretted his temerity in braving the danger. “Tu l’as voulu” he would repeat self-reproachfully. Even from revolutionary tribunals, however, the name of Lagrange uniformly commanded respect. His pension was continued by the National Assembly, and he was partially indemnified for the depreciation of the currency by remunerative appointments. Nominated president of the Academical commission for the reform of weights and measures, his services were retained when its “purification” by the Jacobins removed his most distinguished colleagues. He again sat on the commission of 1799 for the construction of the metric system, and by his zealous advocacy of the decimal principle largely contributed to its adoption.

Meanwhile, on the 31st of May 1792 he married Mademoiselle Lemonnier, daughter of the astronomer of that name, a young and beautiful girl, whose devotion ignored disparity of years, and formed the one tie with life which Lagrange found it hard to break. He had no children by either marriage. Although specially exempted from the operation of the decree of October 1793, imposing banishment on foreign residents, he took alarm at the fate of J. S. Bailly and A. L. Lavoisier, and prepared to resume his former situation in Berlin. His design was frustrated by the establishment of and his official connexion with the École Normale, and the École Polytechnique. The former institution had an ephemeral existence; but amongst the benefits derived from the foundation of the École Polytechnique one of the greatest, it has been observed,[4] was the restoration of Lagrange to mathematics. The remembrance of his teachings was long treasured by such of his auditors—amongst whom were J. B. J. Delambre and S. F. Lacroix—as were capable of appreciating them. In expounding the principles of the differential calculus, he started, as it were, from the level of his pupils, and ascended with them by almost insensible gradations from elementary to abstruse conceptions. He seemed, not a professor amongst students, but a learner amongst learners; pauses for thought alternated with luminous exposition; invention accompanied demonstration; and thus originated his Théorie des fonctions analytiques (Paris, 1797). The leading idea of this work was contained in a paper published in the Berlin Memoirs for 1772.[5] Its object was the elimination of the, to some minds, unsatisfactory conception of the infinite from the metaphysics of the higher mathematics, and the substitution for the differential and integral calculus of an analogous method depending wholly on the serial development of algebraical functions. By means of this “calculus of derived functions” Lagrange hoped to give to the solution of all analytical problems the utmost “rigour of the demonstrations of the ancients”;[6] but it cannot be said that the attempt was successful. The validity of his fundamental position was impaired by the absence of a well-constituted theory of series; the notation employed was inconvenient, and was abandoned by its inventor in the second edition of his Mécanique; while his scruples as to the admission into analytical investigations of the idea of limits or vanishing ratios have long since been laid aside as idle. Nowhere, however, were the keenness and clearness of his intellect more conspicuous than in this brilliant effort, which, if it failed in its immediate object, was highly effective in secondary results. His purely abstract mode of regarding functions, apart from any mechanical or geometrical considerations, led the way to a new and sharply characterized development of the higher analysis in the hands of A. Cauchy, C. G. Jacobi, and others.[7] The Théorie des fonctions is divided into three parts, of which the first explains the general doctrine of functions, the second deals with its

  1. Œuvres, i. 15.
  2. Méc. An., Advertisement to 1st ed.
  3. E. Dühring, Kritische Gesch. der Mechanik, 220, 367; Lagrange, Méc. An. i. 166-172, 3rd ed.
  4. Notice by J. Delambre, Œuvres de Lagrange, i. p. xlii.
  5. Œuvres, iii. 441.
  6. Théorie des fonctions, p. 6.
  7. H. Suter, Geschichte der math. Wiss. ii. 222-223.