(B, H) curve for the standard, which is assumed to have been determined; and this same value corresponds to the force H in the case of the test bar. Thus any desired number of corresponding values of H and B can be easily and quickly found.
Measurement of Field Strength. Exploring Coil.—Since in air B = H, the ballistic method of measuring induction described above is also available for determining the strength of a magnetic field, and is more often employed than any other. A small coil of fine wire, connected in series with a ballistic galvanometer, is placed in the field, with its windings perpendicular to the lines of force, and then suddenly reversed or withdrawn from the field, the integral electromotive force being twice as great in the first case as in the second. The strength of the field is proportional to the swing of the galvanometer-needle, and, when the galvanometer is calibrated, can be expressed in C.G.S. units. Convenient arrangements have been introduced whereby the coil is reversed or withdrawn from the field by the action of a spring.
Bismuth Resistance.—The fact, which will be referred to later, that the electrical resistance of bismuth is very greatly affected by a magnetic field has been applied in the construction of apparatus for measuring field intensity. A little instrument, supplied by Hartmann and Braun, contains a short length of fine bismuth wire wound into a flat double spiral, half an inch or thereabouts in diameter, and attached to a long ebonite handle. Unfortunately the effects of magnetization upon the specific resistance of bismuth vary enormously with changes of temperature; it is therefore necessary to take two readings of the resistance, one when the spiral is in the magnetic field, the other when it is outside.
Electric Circuit.—If a coil of insulated wire is suspended so that it is in stable equilibrium when its plane is parallel to the direction of a magnetic field, the transmission of a known electric current through the coil will cause it to be deflected through an angle which is a function of the field intensity.
One of the neatest applications of this principle is that described by Edser and Stansfield (Phil. Mag., 1893, 34, 186), and used by them to test the stray fields of dynamos. An oblong coil about an inch in length is suspended from each end by thin strips of rolled German silver wire, one of which is connected with a spiral spring for regulating the tension, the other being attached to a torsion-head. Inside the torsion-head is a commutator for automatically reversing the current, so that readings may be taken on each side of zero, and the arrangement is such that when the torsion-head is exactly at zero the current is interrupted. To take a reading the torsion-head is turned until an aluminium pointer attached to the coil is brought to the zero position on a small scale; the strength of the field is then proportional to the angular torsion. The small current required is supplied to the coil from a single dry cell. The advantages of portability, very considerable range (from H = 1 upwards), and fair accuracy are claimed for the instrument.
Polarized Light.—The intensity of a field may be measured by the rotation of the plane of polarization of light passing in the direction of the magnetic force through a transparent substance. If the field is uniform, H = θ/ωd, where θ is the rotation, d the thickness of the substance arranged as a plate at right angles to the direction of the field, and ω Verdet’s constant for the substance.
For the practical measurement of field intensity du Bois has used plates of the densest Jena flint glass. These are preferably made slightly wedge-shape, to avoid the inconvenience resulting from multiple internal reflections, and they must necessarily be rather thin, so that double refractions due to internal strain may not exert a disturbing influence. Since Verdet’s constant is somewhat uncertain for different batches of glass even of the same quality, each plate should be standardized in a field of known intensity. As the source of monochromatic light a bright sodium burner is used, and the rotation, which is exactly proportional to H, is measured by an accurate polarimeter. Such a plate about 1 mm. in thickness is said to be adapted for measuring fields of the order of 1000 units. A part of one surface of the plate may be silvered, so that the polarized ray, after having once traversed the glass, is reflected back again; the rotation is thus doubled, and moreover, the arrangement is, for certain experiments, more convenient than the other.
4. Magnetization in Strong Fields
Fig. 22. |
Fields due to Coils.—The most generally convenient arrangement for producing such magnetic fields as are required for experimental purposes is undoubtedly a coil of wire through which an electric current can be caused to flow. The field due to a coil can be made as nearly uniform as we please throughout a considerable space; its intensity, when the constants of the coil are known, can be calculated with ease and certainty and may be varied at will through wide ranges, while the apparatus required is of the simplest character and can be readily constructed to suit special purposes. But when exceptionally strong fields are desired, the use of a coil is limited by the heating effect of the magnetizing current, the quantity of heat generated per unit of time in a coil of given dimensions increasing as the square of the magnetic field produced in its interior. In experiments on magnetic strains carried out by H. Nagaoka and K. Honda (Phil. Mag., 1900, 49, 329) the intensity of the highest field reached in the interior of a coil was 2200 units; this is probably the strongest field produced by a coil which has hitherto been employed in experimental work. In 1890 some experiments in which a coil was used were made by du Bois (Phil. Mag., 1890, 29, 253, 293) on the magnetization of iron, nickel, and cobalt under forces ranging from about 100 to 1250 units. Since the demagnetizing factor was 0.052, the strongest field due to the coil was about 1340; but though arrangements were provided for cooling the apparatus by means of ice, great difficulty was experienced owing to heating. Du Bois’s results, which, as given in his papers, show the relation of H to the magnetic moment per unit of mass, have been reduced by Ewing to the usual form, and are indicated in fig. 22, the earlier portions of the curves being sketched in from other data.
Fields due to Electromagnets.—The problem of determining the magnetization of iron and other metals in the strong fields formed between the poles of an electromagnet was first attacked by J. A. Ewing and W. Low. An account of their preliminary experiments by what they call the isthmus method was published in 1887 (Proc. Roy. Soc. 42, 200), and in the following year they described a more complete and perfect series (Phil. Trans., 1889, 180, 221).
Fig. 23. |
The sample to be inserted between the magnet poles was prepared in the form of a bobbin resembling an ordinary cotton reel, with a short narrow neck (constituting the “isthmus”) and conical ends. Upon the central neck was wound a coil consisting of one or two layers of very fine wire, which was connected with a ballistic galvanometer for measuring the induction in the iron; outside this coil, and separated from it by a small and accurately determined distance, a second coil was wound, serving to measure the induction in the iron, together with that in a small space surrounding it. The difference of the ballastic throws taken with the two coils measured the intensity of the field in the space around the iron, and it also enabled a correction to be made for the non-ferrous space between the iron neck and the centre of the thickness of the inner coil. The pole pieces of the electromagnet (see fig. 23) were furnished with a pair of truncated cones b b, of soft iron forming an extension of the conical ends of the bobbin c. The most suitable form for the pole faces is investigated in the paper, and the conclusion arrived at is that to produce the greatest concentration of force upon the central neck, the cones should have a common vertex in the middle of the neck with a semi-vertical angle of 54° 44′, while the condition for a uniform field is satisfied when the cones have a semi-vertical angle of 39° 14′; in the latter case the magnetic force in the air just outside is sensibly equal to that within the neck. A pair of cones having a semi-vertical angle of 45° were considered to combine high concentrative power with a sufficient approximation to uniformity of field. In most of the experiments the measurements were made by suddenly withdrawing the bobbin from its place