Page:EB1911 - Volume 17.djvu/354

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
DIMENSIONS AND MAGNETIZATION]
MAGNETISM
339


Joule and others experimented with hardened steel, but failed to find a key to the results they obtained, which are rather complex, and have been thought to be inconsistent. The truth appears to be that a hardened steel rod generally behaves like one of iron or soft steel in first undergoing extension under increasing magnetizing force, and recovering its original length when the force has reached a certain critical value, beyond which there is contraction. But this “critical value” of the force is found to depend in an unexpected manner upon the hardness of the steel; the critical value diminishes as the hardness becomes greater up to a certain point, corresponding to a yellow temper, after which it increases and with the hardest steel becomes very high. For steel which has been made red-hot, suddenly cooled, and then let down to a yellow temper, the critical value of the magnetizing force is smaller than for steel which is either softer or harder; it is indeed so small that the metal contracts like nickel even under weak magnetizing forces, without undergoing any preliminary extension that can be detected.

Joule also made experiments upon iron wires under tension, and drew the erroneous inference (which has been often quoted as if it were a demonstrated fact) that under a certain critical tension (differing for different specimens of iron but independent of the magnetizing force) magnetization
Fig. 25.
would produce no effect whatever upon the dimensions of the wire. What actually happens when an iron wire is loaded with various weights is clearly shown in Fig. 25. Increased tension merely has the effect of diminishing the maximum elongation and hastening the contraction; with the two greatest loads used in the experiment there was indeed no preliminary extension at all.[1] The effects of tension upon the behaviour of a nickel wire are of a less simple character. In weak fields the magnetic contraction is always diminished by pulling stress; in strong fields the contraction increases under a small load and diminishes under a heavy one. Cobalt, curiously enough, was found to be quite unaffected by tensile stress.

Certain experiments by C. G. Knott on magnetic twist, which will be referred to later, led him to form the conclusion that in an iron wire carrying an electric current the magnetic elongation would be increased. This forecast was shown by Bidwell to be well founded. The effect produced by a current is exactly opposite to that of tension, raising the elongation curve instead of depressing it. In the case of a wire 0.75 mm. in diameter the maximum elongation was nearly doubled when a current of two amperes was passing through the iron, while the “critical value” of the field was increased from 130 to 200. Yet notwithstanding this enormous effect in iron, the action of a current upon nickel and cobalt turned out to be almost inappreciable.

Some experiments were next undertaken with the view of ascertaining how far magnetic changes of length in iron were dependent upon the hardness of the metal, and the unexpected result was arrived at that softening produces the same effect as tensile stress; it depresses the elongation curve, diminishing the maximum extension, and reducing the “critical value” of the magnetizing force. A thoroughly well annealed ring of soft iron indeed showed no extension at all, beginning to contract, like nickel, under the smallest magnetizing forces. The experiments were not sufficiently numerous to indicate whether, as is possible, there is a critical degree of hardness for which the height of the elongation curve is a maximum.

Finally, experiments were made to ascertain the effect of magnetization upon the dimensions of iron rings in directions perpendicular to the magnetization, and upon the volume of the rings.[2] It was found that the curve showing the relation of transverse changes of dimensions to magnetizing force was similar in general character to the familiar elongation curves, but the signs were reversed; the curve was inverted, indicating at first retraction, which, after passing a maximum and vanishing in a critical field, was succeeded by elongation. The curve showing the circumferential (or longitudinal) changes was also plotted, and from the two curves thus obtained it was easy, on the assumption that the metal was isotropic in directions at right angles to the magnetization, to calculate changes of volume; for if circumferential elongation be denoted by l1, and transverse elongation by l2, then the cubical dilatation (+ or −) = l1 + 2l2 approximately. If l1 were exactly equal to -2l2 for all values of the magnetizing force, it is clear that the volume of the ring would be unaffected by magnetization. In the case of the ring in question, the circumferential changes were in weak fields less than twice as great as the transverse ones, while in strong fields they were more than twice as great; under increasing magnetic force therefore the volume of the ring was first diminished, then it regained its original value (for H = 90), and ultimately increased. It was also shown that annealing, which has such a large effect upon circumferential (or longitudinal) changes, has almost none upon transverse ones. Hence the changes of volume undergone by a given sample of wrought iron under increasing magnetization must depend largely upon the state of the metal as regards hardness; there may be always contraction, or always expansion, or first one and then the other.

Most of the experiments described above have been repeated and the results confirmed by other workers, some of whom have added fresh observations. The complicated hysteresis effects which attend magnetic elongation and retraction have been studied by H. Nagaoka, who also, in conjunction with K. Honda, measured the changes of length of various metals shaped in the form of ovoids instead of cylindrical rods, and determined the magnetization curves for the same specimens; a higher degree of accuracy was thus attained, and satisfactory data were provided for testing theories. Among other things, it was found that the behaviour of cast cobalt was entirely changed by annealing; the sinuous curve shown in Fig. 24 was converted into an almost perfectly straight line passing through the origin, and lying below the horizontal axis; while the permeability of the metal was greatly diminished by the operation. They also tested several varieties of nickel-steel in the form of both ovoids and wires. With a sample containing 25% of nickel no appreciable change was detected; others containing larger percentages, and tested in fields up to 2000, all exhibited elongation, which tended to an asymptotic value as the field was increased. The influence of temperature varying between wide limits has formed the subject of a research by K. Honda and S. Shimizu. For soft iron, tungsten-steel and nickel little difference appeared to result from lowering the temperature down to −186° C. (the temperature of liquid air); at sufficiently high temperatures, 600° to 1000° or more, it was remarked that the changes of length in iron, steel and cobalt tended in every case to become proportional to the magnetic force, the curves being nearly straight lines entirely above the axis. The retraction of nickel was diminished by rising temperature, and at 400° had almost vanished. The influence of high temperature on cobalt was very remarkable, completely altering the character of the change of length: the curves for annealed cobalt show that at 450° this metal behaves just like iron at ordinary temperatures, lengthening in fields up to about 300 and contracting in stronger ones. The same physicists have made some additional experiments upon the effect of tension on magnetic change of length. Bidwell’s results for iron and nickel were confirmed, and it was further shown that the elongation of nickel-steel was very greatly diminished by tension; when

  1. The loads were successively applied in decreasing order of magnitude. They are indicated in fig. 25 as kilos per sq. cm.
  2. Joule believed that the volume was unchanged.