being to diminish the magnetization; on the other hand, with
very weak fields the maximum may not have been reached
with the greatest load that the wire can support without permanent
deformation. When the load on a hardened wire
is gradually increased, the maximum value of I is found to
correspond with a greater stress than when the load is gradually
diminished, this being an effect of hysteresis. Analogous changes
are observed in the residual magnetization which remains after
the wire has been subjected to fields of different strength. The
effects of longitudinal pressure are opposite to those of traction;
when the cyclic condition has been reached, pressure reduces the
magnetization of iron in weak fields and increases it in strong
fields (Ewing, Magnetic Induction, 1900, 223).
The influence of traction in diminishing the susceptibility of nickel was first noticed by Kelvin (W. Thomson), and was subsequently investigated by Ewing and Cowan. The latter found the effect to be enormous, not only upon the induced magnetization, but in a still greater degree upon the residual. Even under so “moderate” a load as 33 kilogrammes per square mm., the induced magnetization of a hard-drawn nickel wire in a field of 60 fell from 386 to 72 units, while the residual was reduced from about 280 to 10. Ewing has also examined the effects produced by longitudinal compression upon the susceptibility and retentiveness of nickel, and found, as was to be expected, that both were greatly increased by pressure. The maximum susceptibility of one of his bars rose from 5.6 to 29 under a stress of 19.8 kilos per square mm. There were reasons for believing that no Villari reversal would be found in nickel. Ewing and Cowan looked carefully for it, especially in weak fields, but failed to discover anything of the kind.[1] Some experiments by A. Heydweiller,[2] which appeared to indicate a reversal in weak fields (corresponding to I = 5, or thereabouts), have been shown by Honda and Shimizu to be vitiated by the fact that his specimen was not initially in a magnetically neutral state; they found that when the applied field had the same direction as that of the permanent magnetization, Heydweiller’s fallacious results were easily obtained; but if the field were applied in the direction opposite to that of the permanent magnetization, or if, as should rightly be the case, there were no permanent magnetization at all, then there was no indication of any Villari reversal. Thus a very important question, which has given rise to some controversy, appears to be now definitely settled.
The effects of longitudinal pressure upon the magnetization of cast cobalt have been examined by C. Chree,[3] and also by J. A. Ewing.[4] Chree’s experiments were undertaken at the suggestion of J. J. Thomson, who, from the results of Bidwell’s observations on the magnetic deformation of cobalt, was led to expect that that metal would exhibit a reversal opposite in character to the effect observed in iron. The anticipated reversal was duly found by Chree, the critical point corresponding, under the moderate stress employed, to a field of about 120 units. Ewing’s independent experiments showed that the magnetization curve for a cobalt rod under a load of 16.2 kilogrammes per square mm. crossed the curve for the same rod when not loaded at H = 53. Both observers noticed analogous effects in the residual magnetization. The effect of tension was subsequently studied by Nagaoka and Honda, who in 1902 confirmed, mutatis mutandis, the results obtained by Chree and Ewing for cast cobalt, while for annealed cobalt it turned out that tension always caused diminution of magnetization, the diminution increasing with increasing fields. They also investigated the magnetic behaviour of various nickel-steels under tension, and found that there was always increase of magnetization. Thus it has been proved that in annealed cobalt and in nickel-steel there is no Villari reversal.
It has been pointed out by J. J. Thomson (Applications of Dynamics to Physics and Chemistry, 47) that on dynamical principles there must be a reciprocal relation between the changes of dimensions produced by magnetization and the changes of magnetization attending mechanical strain. Since, for example, stretching diminishes the magnetization of nickel, it follows from theory that the length of a nickel rod should be diminished by magnetization and conversely. So, too, the Villari reversals in iron and cobalt might have been predicted—as indeed that in cobalt actually was—from a knowledge of the changes of length which those metals exhibit when magnetized.
The complete reciprocity of the effects of magnetization upon length and of stretching upon magnetization is shown by the following parallel statements:—
Iron. | |
Magnetization produces increase of length in weak fields, decrease in strong fields. |
Tension produces increase of magnetization in weak fields, decrease in strong fields. |
Cast Cobalt. | |
Magnetization produces decrease of length in weak fields, increase in strong fields. |
Tension produces decrease of magnetization in weak fields, increase in strong fields. |
Nickel and Annealed Cobalt. | |
Magnetization produces decrease of length in all fields. | Tension produces decrease of magnetization in all fields. |
Nickel-Steel. | |
Magnetization produces increase of length in all fields. | Tension produces increase of magnetization in all fields. |
Nagaoka and Honda (Phil. Mag., 1898, 46, 261) have investigated the effects of hydrostatic pressure upon magnetization, using the same pieces of iron and nickel as were employed in their experiments upon magnetic change of volume. In the iron cylinder and ovoid, which expanded when magnetized, compression caused a diminution of magnetization; in the nickel rod, which contracted when magnetized, pressure was attended by an increase of magnetization. The amount of the change was in both cases exceedingly small, that in iron being less than 0.1 C.G.S. unit with a pressure of 250 atmospheres and H = 54. It would hardly be safe to generalize from these observations; the effects may possibly be dependent upon the physical condition of the metals. In the same paper Nagaoka and Honda describe an important experiment on the effect of transverse stress. An iron tube, having its ends closed by brass caps, was placed inside a compressing vessel into which water was forced until the pressure upon the outer surface of the tube reached 250 atmospheres. The experiment was the reverse of one made by Kelvin with a gun-barrel subjected to internal hydrostatic pressure (Phil. Trans., 1878, 152, 64), and the results were also the reverse. Under increasing magnetizing force the magnetization first increased, reached a maximum, and then diminished until its value ultimately became less than when the iron was in the unstrained condition. Experiments on the effect of external hydrostatic pressure upon the magnetization of iron rings have also been made by F. Frisbie,[5] who found that for the magnetizing forces used by Nagaoka and Honda pressure produced a small increase of magnetization, a result which appears to be in accord with theory.
The relations of torsion to magnetization were first carefully studied by G. Wiedemann, whose researches are described in his Elektricität, iii. 671. The most interesting of his discoveries, now generally known as the “Wiedemann effect,” is the following: If we magnetize longitudinally a straight wire which is fixed at one end and free at the other, and then pass an electric current through the wire (or first pass the current and then magnetize), the free end of the wire will twist in a certain direction depending upon circumstances: if the wire is of iron, and is magnetized (with a moderate force) so that its free end has north polarity, while the current through it passes from the fixed to the free end, then the free end as seen from the fixed end will twist in the direction of the hands of a watch; if either the magnetization or the current is reversed, the direction of the twist will be reversed. To this mechanical phenomenon there is a magnetic reciprocal. If we twist the free end of a ferromagnetic wire while a current is passing through it, the wire becomes longitudinally magnetized, the direction of the magnetization depending upon circumstances: if the wire is of iron and is twisted so that its free end as seen from the fixed end turns in the direction of the hands of a watch, while
- ↑ H. Tomlinson found a critical point in the “temporary magnetization” of nickel (Proc. Phys. Soc., 1890, 10, 367, 445), but this does not correspond to a Villari reversal. Its nature is made clear by Ewing and Cowan’s curves (Phil. Trans., 1888, 179, plates 15, 16).
- ↑ Wied. Ann., 1894, 52, 462; Electrician, 1894, 34, 143.
- ↑ Phil. Trans., 1890, 131, 329.
- ↑ Magnetic Induction, 1900, 222.
- ↑ Phys. Rev., 1904, 18, 432.