Page:EB1911 - Volume 18.djvu/946

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
914
MOTOR VEHICLES
  


motor is a modification which runs at absolutely synchronous speed, receiving the necessary energy in the secondary not in virtue of slip behind synchronous speed, but from great difference in wave form between the primary and secondary circuits, so that energy due to harmonics of the fundamental frequency is periodically received by the armature in spite of synchronism in speed. Such motors are not employed commercially, but sometimes find a field for usefulness in the laboratory.

(B) 4. Repulsion-commutating Motors constitute a class of single-phase alternating-current motors which has risen to considerable commercial importance. They are fundamentally induction motors in the sense that the armature currents are supplied by the inductive action of the field. The armature winding is, however, provided with a commutator and (for a two-pole motor) two diametrically opposite brushes, which are short-circuited on each other and placed at an angle with the line of field magnetization. By this device the magnetic axis of the armature is held at a fixed angle with the field flux, so that the condition for steady torque is always fulfilled, its amount depending on the position of the brushes. Were these either in line with, or exactly at right angles to, the field poles, the torque would be zero—in the first case from lack of angular displacement, in the second from lack of secondary current. The brushes being skewed, however, the secondary current is maintained at a suitable value, and the motor runs in a definite direction. The general principle is merely that of a transformer with a movable secondary under magnetic thrust. During reversal of the current the torque relation remains fixed, since the primary and secondary currents both change sign, preserving the magnetic relations as in a series-wound continuous-current machine.

If such a motor is of moderate reactance, the currents are large and the torque very considerable. The repulsion-commutating connexion is considerably used as a starting device for single-phase induction motors, the commutator being short-circuited as a whole when the armature reaches synchronous speed. Thereafter the machine operates as a pure induction motor of the sort just described. The advantage of this change is that the commutator is eliminated, save at starting, and the motor becomes practically a constant speed machine like any other properly-designed simple induction motor. Such motors can be made to start if necessary with several times the normal running torque and a nearly proportionate increase of current. The short-circuiting of the commutator is generally performed automatically by a centrifugal governor. When at speed, efficiency and power factor are those of the typical motor of class (B)3.

The pure repulsion-commutating motor, worked as such, on the other hand, resembles a series-wound motor in its characteristics, having no fixed speed and being capable of running far above nominal synchronism. This results from the fixed angular relation maintained by the brushes between the armature and field magnetizations, whereby the torque conditions are preserved. Above the nominal synchronous speed, however, difficulties of commutation set in, so that some modifications of this simple type are desirable for wide ranges of speed. The power factors of these motors compare well, both in starting and in' running, with those of the best pure induction motors, and their efficiencies are similar. These machines are reversible, serving as alternating generators when driven mechanically at “negative” speed.

Instead of simply skewing the brush line in the repulsion motor, an entirely analogous effect may be produced by dividing the field coils into pairs placed. in quadrature, the brush line being parallel to one pair and at right angles to the other. This merely amounts to dividing the function of the original field physically into its components, a change which sometimes tends to improve the stability of the running conditions.

A more radical departure is found in the group of so-called “compensated-repulsion” motors, of which there are several members, due to various inventors, all material improvements on the pure repulsion type just described. Their common characteristic is that while possessing like simple commutator-repulsion motors, a transformer field acting upon the armature as secondary, and a pair of short-circuiting brushes holding the resulting armature magnetization in definite alignment, they also send the primary current in series through the armature via a second pair of brushes in quadrature with the first. The substantial effect of this series connexion is to cut down the virtual reactance of the armature as the speed rises, practically annulling it at synchronous speed. In alternating motors the motor-electromotive force is not merely that due to the motion of the armature conductors but the geometrical resultant of this and the reactance E.M.F.’s. In the motor here considered and analogous machines an auxiliary E.M.F. is applied either as here, conductively or inductively, in such direction as to compensate more or less perfectly the armature reactance E.M.F. The result is to secure, at least for a certain speed, a power factor near unity, as in the motor under discussion, although the starting conditions are not particularly good and the performance deteriorates above synchronism. In some motors of this type the compensating E.M.F. is introduced by an auxiliary winding in series and in quadrature with the main field, instead of by supplementary brushes. The modifications of the general scheme are rather numerous, and out of them have come some excellent single-phase motors now widely used for traction purposes.

(B) 5. Series Commutating Motors.—This important and interesting type is derived directly from the ordinary series motor for continuous current. The torque in these does not change sign with reversal of the current in both field and armature, and consequently alternating current can still produce in them unidirectional torque. Practically the first step toward an alternating current series motor is lamination of the field to reduce parasitic currents; the second is to keep down the reactance. A laminated field motor performs fairly well at a frequency of 10 periods or thereabouts, but to render it useful at ordinary frequencies requires modification in design. The motor being as before the geometrical sum of the reactance E.M.F. and that due to motion of the armature conductors, the first improvement can be made by making the latter dominant, i.e. by making the armature relatively very powerful. The plain series commutating motor has then a relatively weak laminated field and a powerful armature. To check trouble with commutation due to short-circuiting coils under a brush, it usually has high resistance commutator leads, and thus equipped is capable of very fair performance, having the same general characteristics as the continuous-current series motor. Even so the armature reactance is somewhat excessive, so that with this simple construction the power factor is apt to be bad. Practically the plain series commutating motor is hardly used at all, but rather modifications of it corresponding very closely to those mentioned in connexion with the repulsion motor. In other words, an auxiliary electromotive force tending to annul the reactance E.M.F. of the armature is imposed upon the armature circuit. This is accomplished generally by a “compensating coil” in series and in space-quadrature with the main field. In another modification the compensating coil is closed upon itself, forming a short-circuited secondary, to which the armature itself acts as primary. The end to be attained is the addition of an E.M.F. such that the vector sum of the E.M.F.’s in the armature shall reduce as nearly as may be to the E.M.F. due to the motion of the armature conductors, as in a continuous-current motor. Obviously it is difficult to secure full compensation for all loads and speeds, but it can be made nearly complete for some particular load and speed.

These “series-compensated” motors behave much like continuous-current series motors, and, when properly designed, run well on continuous current. They have been developed particularly for heavy traction purposes, to which they are well adapted, owing to their ability to work well at all speeds. They give a very high maximum power factor and a reasonably good one over a considerable range of speed and load. Obviously both the field proper and the compensating field can be made subject to regulation to increase the range of successful action. Motors of this type have already come into successful use for fast and heavy railway service. Commutation appears to be reasonably good, although it is a far more difficult problem than with continuous-current machines.

The efficiency and output for unit weight in all alternating-current motors is a little less favourable than with continuous-current motors. In the last resort the supply of energy to a single-phase motor is essentially discontinuous, and there is inevitable extra loss from hysteresis and parasitic currents, whether the motor is single phase or polyphase. The result is that an alternating-current motor requires, other things being similar, more or better material, and loses a little more energy than a continuous-current motor of equal output. Motor design is a compromise, and while any one property can be exaggerated, it will be at the expense of others. One could probably build, for instance, a series-compensated motor of as high efficiency or as large output per unit weight as any commercial motor, but there would be sacrifice somewhere, in cost if not conspicuously elsewhere. As a matter of fact, the difference in efficiency usually amounts only to a very few per cents., and the difference in output per unit weight to a few more. The gain in the use of alternating-current motors is in facility and economy of distribution, which in many cases is far more than enough to overweigh any inherent disabilities in the machines themselves. Hence they are coming steadily into extended use.  (L. Bl.) 


MOTOR VEHICLES. The term “motor-car” is one which was primarily employed in America to denote the car or carriage containing the electro-motor used for propelling an electric tramcar or train of carriages on rails, but of late years it has been more usually applied in Great Britain to light automobile or mechanically-propelled carriages running on common roads. On the continent of Europe and in the United States the usual expression for these vehicles is “automobile”; the term “autocar” has also been employed. We shall deal here first with the history of mechanically propelled carriages, and with the evolution of the lighter type used for conveying people for pleasure and sport; and secondly with the heavier type used for the carriage of goods.

Light Vehicles.—The first practical steam carriage was made by Richard Trevithick in 1802 (fig. 1), though Cugnot had produced a rudimentary one in France in 1769; but very little was done in