creations in a garb which would appear less strange and uncouth to those not familiar with the new method. The Principia gives no information on the subject of the notation adopted in the new calculus, and it was not until 1693 that it was communicated to the scientific world in the second volume of Dr Wallis’s works.
Newton’s admirers in Holland had informed Dr Wallis that Newton’s method of fluxions passed there under the name of Leibnitz’s Calculus Differentialis. It was therefore thought necessary that an early opportunity should be taken of asserting Newton’s claim to be the inventor of the method of fluxions, and this was the reason for this method first appearing in Wallis’s works. A further account of the method was given in the first edition of Newton’s Optics, which appeared in 1704. To this work were added two treatises, entitled Tractatus duo de speciebus et magnitudine figurarum curvilinearum, the one bearing the title Tractatus de Quadratura Curvarum, and the other Enumeratio linearum tertii ordinis. The first contains an explanation of the doctrine of fluxions, and of its application to the quadrature of curves; the second, a classification of seventy-two curves of the third order, with an account of their properties. The reason for publishing these two tracts in his Optics, from the subsequent editions of which they were omitted, is thus stated in the advertisement:—
“In a letter written to M Leibnitz in the year 1679, and published by Dr Wallis, I mentioned a method by which I had found some general theorems about squaring curvilinear figures on comparing them with the conic sections, or other the simplest figures with which they might be compared. And some years ago I lent out a manuscript containing such theorems; and having since met with some things copied out of it, I have on this occasion made it public, prefixing to it an introduction, and joining a Scholium concerning that method. And I have joined with it another small tract concerning the curvilineal figures of the second kind, which was also written many years ago, and made known to some friends, who have solicited the making it public.”
In 1707 William Whiston published the algebraical lectures which Newton had delivered at Cambridge, under the title of Arithmetica Universalis, sive de Compositione et Resolutione Arithmetica Liber. We are not accurately informed how Whiston obtained possession of this work; but it is stated by one of the editors of the English edition “that Mr Whiston, thinking it a pity that so noble and useful a work should be doomed to a college confinement, obtained leave to make it public.” It was soon afterwards translated into English by Raphson; and a second edition of it, with improvements by the author, was published at London in 1712, by Dr Machin, secretary to the Royal Society. With the view of stimulating mathematicians to write annotations on this admirable work, the celebrated ’s Gravesande published a tract, entitled Specimen Commentarii in Arithmeticam Universalem; and Maclaurin’s Algebra seems to have been drawn up in consequence of this appeal.
Newton’s solution of the celebrated problems proposed by John Bernoulli and Leibnitz deserves mention among his mathematical works. In June 1696 Bernoulli addressed a letter to the mathematicians of Europe challenging them to solve two problems—(1) to determine the brachistochrone between two given points not in the same vertical line, (2) to determine a curve such that, if a straight line drawn through a fixed point A meet it in two points P1, P2, then AP1m + AP2m will be constant. This challenge was first made in the Acta Lipsiensia for June 1696. Six months were allowed by Bernoulli for the solution of the problem, and in the event of none being sent to him he promised to publish his own. The six months elapsed without any solution being produced; but he received a letter from Leibnitz, stating that he had “cut the knot of the most beautiful of these problems,” and requesting that the period for their solution should be extended to Christmas next, that the French and Italian mathematicians might have no reason to complain of the shortness of the period. Bernoulli adopted the suggestion, and publicly announced the prorogation for the information of those who might not see the Acta Lipsiensia.
On the 29th of January 1696/7 Newton received from France two copies of the printed paper containing the problems, and on the following day he transmitted a solution of them to Montague, then president of the Royal Society. He announced that the curve required in the first problem must be a cycloid, and he gave a method of determining it. He solved also the second problem, and he showed that by the same method other curves might be found which shall cut off three or more segments having the like properties. Solutions were also obtained from Leibnitz and the Marquis de L’Hôpital; and, although that of Newton was anonymous, yet Bernoulli recognized the author in his disguise; “tanquam,” says he, “ex ungue leonem.”
In 1699 Newton’s position as a mathematician and natural philosopher was recognized by the French Academy of Sciences. In that year the Academy was remodelled, and eight foreign associates were created. Leibnitz, Domenico Guglielmini (1655–1710), Hartsoeker, and E. W. Tschirnhausen were appointed on the 4th of February, James Bernoulli and John Bernoulli on the 14th of February, and Newton and Olaus Roemer on the 21st of February.
While Newton held the office of warden of the mint, he retained his chair of mathematics at Cambridge, and discharged the duties of the post, but shortly after he was promoted to be master of the mint he appointed Whiston his deputy with “the full profits of the place.” Whiston began his astronomical lectures as Newton’s deputy in January 1701. On the 10th of December 1701 Newton resigned his professorship, thereby at the same time resigning his fellowship at Trinity, which he had held with the Lucasian professorship since 1675 by virtue of the royal mandate. Whiston’s claims to succeed Newton in the Lucasian chair were successfully supported by Newton himself.
On the 26th of November 1701 Newton was again elected one of the representatives of the university in parliament, but he retained his seat only until the dissolution in the following July. Newton does not seem to have been a candidate at this election, but at the next dissolution in 1705 he was again a candidate for the representation of the university. He was warmly supported by the residents, but being a Whig in politics he was opposed by the non-residents, and beaten by a large majority.
In the autumn of 1703 Lord Somers retired from the presidency of the Royal Society, and Newton on the 30th of November 1703 was elected to succeed him. Newton was annually re-elected to this honourable post during the remainder of his life. He held the office in all twenty-five years, a period in which he has been exceeded by but one other president of the Royal Society, Sir Joseph Banks. As president Newton was brought into close connexion with Prince George of Denmark, the queen’s husband, who had been elected a fellow of the Royal Society. The prince had offered, on Newton’s recommendation, to be at the expense of printing Flamsteed’s observations, and especially his catalogue of the stars. It was natural that the queen should form a high opinion of one whose merits had made such a deep impression on her husband. In April 1705, when the queen, the prince and the court were staying at the royal residence at Newmarket, they paid a visit to Cambridge, where they were the guests of Dr Bentley, the master of Trinity. Her Majesty went in state to the Regent House, where a congregation of the senate was held, and a number of honorary degrees conferred. Afterwards the queen held a court at Trinity Lodge, where (16th of April 1705) she conferred the order of knighthood upon Sir Isaac Newton.
As soon as the first edition of the Principia was published Newton began to prepare for a second edition. He was anxious to improve the work by additions to the theory of the motion of the moon and the planets. Dr Edleston, in his preface to Newton’s correspondence with Cotes, justly remarks:—
“If Flamsteed the Astronomer-Royal had cordially co-operated with him in the humble capacity of an observer in the way that Newton pointed out and requested of him . . . the lunar theory would, if its creator did not overrate his own powers, have been completely investigated, so far as he could do it, in the first few months of 1695, and a second edition of the Principia would probably have followed the execution of the task at no long interval.”
Newton, however, could not get the information he wanted from Flamsteed, and after the spring of 1696 his time was much