the bars of which remain parallel to the wires in the field of the eye-piece. Sections perpendicular to an optic axis of a biaxial mineral under the same conditions show a dark bar which on rotation becomes curved to a hyperbolic shape. If the section is perpendicular to a “bisectrix” (see Crystallography) a black cross is seen which on rotation opens out to form two hyperbolas, the apices of which are turned towards one another. The optic axes emerge at the apices of the hyperbolas and may be surrounded by coloured rings, though owing to the thinness of minerals in rock sections these are only seen when the double refraction of the mineral is strong. The distance between the axes as seen in the field of the microscope depends partly on the axial angle of the crystal and partly on the numerical aperture of the objective. If it is measured by means of an eye-piece micrometer, the optic axial angle of the mineral can be found by a simple calculation. The quartz wedge, quarter mica plate or selenite plate permit the determination of the positive or negative character of the crystal by the changes in the colour or shape of the figures observed in the field. These operations are precisely similar to those employed by the mineralogist in the examination of plates cut from crystals. It is sufficient to point out that the petrological microscope in its modern development is an optical instrument of great precision, enabling us to determine physical constants of crystallized substances as well as serving to produce magnified images like the ordinary microscope. A great variety of accessory apparatus has been devised to fit it for these special uses.
The separation of the ingredients of a crushed rock powder from one to another in order to obtain pure samples suitable for analysis is also extensively practised It may be effected by means of a powerful electro-magnet the strength of which can be regulated as desired. A weak magnetic field will attract magnetite, then haematite Separation of Components. and other ores of iron. Silicates containing iron will follow in definite order and biotite, enstatite, augite, hornblende, garnet and similar ferro-magnesian minerals may be successively abstracted, at last only the colourless, non-magnetic compounds, such as muscovite, calcite, quartz and felspar, will remain. Chemical methods also are useful. A weak acid will dissolve calcite from a crushed limestone, leaving only dolomite, silicates or quartz. Hydrofluoric acid will attack felspar before quartz, and if employed with great caution will dissolve these and any glassy material in a rock powder before dissolving augite or hypersthene. Methods of separation by specific gravity have a still wider application. The simplest of these is levigation (Lat. levigare, to make smooth, levis) or treatment by a current of water, it is extensively employed in the mechanical analysis of soils and in the treatment of ores, but is not so successful with rocks, as their components do not as a rule differ very greatly in specific gravity.
Fluids are used which do not attack the majority of the rock-making minerals and at the same time have a high specific gravity. Solutions of potassium mercuric iodide (sp. gr. 3·196), cadmium borotungstate (sp. gr 3·30), methlyene iodide (sp. gr. 3·32), bromoform (sp. gr. 2·86), or acetylene bromide (sp. gr. 3·00) are the principal media employed They may be diluted (with water, benzene, &c.) to any desired extent and again concentrated by evaporation. If the rock be a granite consisting of biotite (sp. gr. 3·1), Muscovite (sp. gr. 2·85), quartz (sp. gr. 2·65), oligoclase (sp. gr. 2·64) and orthoclase (sp. gr. 2·56) the crushed minerals will all float in methylene iodide; on gradual dilution with benzene they will be precipitated in the order given above. Although simple in theory these methods are tedious in practice, especially as it is common for one rock-making mineral to enclose another. But expert handling of fresh and suitable rocks yields excellent results and much purer powders may be obtained by this means than by any other.
Although rocks are now studied principally in microscopic sections the investigation of fine crushed rock powders, which was the first branch of microscopic petrology to receive attention, is by no means discontinued. The modern optical methods Examination of Rock Powders.are perfectly applicable to transparent mineral fragments of any kind. Minerals are almost as easily determined in powder as in section, but it is otherwise with rocks, as the structure or relation of the components to one another, which is an element of great importance in the study of the history and classification of rocks, is almost completely destroyed by grinding them to powder.
In addition to naked-eye and microscopic investigations chemical methods of research are of the greatest practical utility to the petrographer. The crushed and separated powders, obtained by the processes described above, may be analysed and thus the chemical composition of the minerals in the rock determined qualitatively or quantitatively. The chemical testing of microscopic sections and minute Chemical Analysis. grains by the help of the microscope is a very elegant and valuable means of discriminating between the mineral components of fine-grained rocks. Thus the presence of apatite in rock-sections is established by covering a bare rock-section with solution of ammonium molybdate, a turbid yellow precipitate forms over the crystals of the mineral in question (indicating the presence of phosphates). Many silicates are insoluble in acids and cannot be tested in this way, but others are partly dissolved, leaving a film of gelatinous silica which can be stained with colouring matters such as the aniline dyes (nepheline, analcite, zeolites, &c.).
Complete chemical analyses of rocks are also widely made use of and are of the first importance, especially when new species are under description. Rock analysis has of late years (largely under the influence of the chemical laboratory of the United States Geological Survey) reached a high pitch of refinement and complexity. As many as twenty or twenty-five components may be determined, but for practical purposes a knowledge of the relative proportions of silica, alumina, ferrous and ferric oxides, magnesia, lime, potash, soda and water will carry us a long way in determining the position to which a rock is to be assigned in any of the conventional classifications. A chemical analysis is in itself usually sufficient to indicate whether a rock is igneous or sedimentary and in either case to show with considerable accuracy to what subdivision of these classes it belongs. In the case of metamorphic rocks it often establishes whether the original mass was a sediment or of volcanic origin.
The specific gravity of rocks is determined in the usual way by means of the balance and the pycnometer. It is greatest in those rocks which contain most magnesia, iron and heavy metals; least in rocks rich in alkalis, silica and water. It diminishes with weathering, Specific Gravity.and generally those rocks which are highly crystalline have higher specific gravities than those which are wholly or partly vitreous when both have the same chemical composition. The specific gravity of the commoner rocks ranges from about 2·5 to 3·2.
The above methods of investigation, naked eye, physical, microscopical, chemical, may be grouped together as analytical in contradistinction to the synthetic investigation of rocks, which proceeds by experimental work to reproduce different rock types Rock Synthesis.and in this way to elucidate their origin and explain their structures. In many cases no experiment is necessary. Every stage in the origin of clays, sands and gravels can be seen in process around us, but where these have been converted into coherent shales, sandstones and conglomerates, and still more where they have experienced some degree of metamorphism, there are many obscure points about their history upon which experiment may yet throw light. Up to the present time these investigations have been almost entirely confined to the attempt to reproduce igneous rocks by fusion of mixtures of crushed minerals or of chemicals in specially contrived furnaces. The earliest researches of this sort are of those of Faujas St Fond and of de Saussure, but Sir James Hall really laid the foundations of this branch of petrology. He showed (1798) that the whinstones (diabases) of Edinburgh were fusible and if rapidly cooled yielded black vitreous masses closely resembling natural pitchstones and obsidians; if cooled more slowly they consolidated as crystalline rocks not unlike the whinstones themselves and containing olivine, augite and felspar (the essential minerals of these rocks). Many years later Daubrée, Delesse and others carried on similar experiments, but the first notable advance was made in 1878, when Fouqué and Lévy began their researches.