paper consists of lines or dots, a combination of the original lines
or dots of the paper and those of the drawing itself, the scraper
splitting up lines into dots or removing them altogether. The
result is quite easily reproduced by the line process. Another
method is by the use of what are known as Day's “shades,” or
shading mediums. They are transparent films of gelatin which
have upon them lines or dots in varying combination in relief, so
that they can be inked up by a roller. When placed over a drawing,
their transparency enables the operator to see exactly what passage
he is dealing with, and he can by means of a burnisher impress the
lines or dots of the shade upon any passage of the drawing; these
lines or dots then become part of the drawing; and are reproduced
in the usual way.
Pencil or chalk drawings upon simple white-grained paper, where the pencil or chalk passing over the ruts or hollows in the paper makes a mark on the top of the grain only, are also reproducible by the line process, but such drawings are apt to be unequal in colour and difficult to deal with. The difficulty led to the invention of a process by Henry Matheson, who, not having the capital to work it, joined the late Mr Dawson, senior, whose sons continued to work the process with Matheson under the name of the Swelled Gelatin Swelled Gelatin Process. Process. It is based upon the fact that gelatin, sensitized with bichromate of potash, swells when placed in water, and swells in proportion to the amount of light to which it has been exposed. A negative taken from a drawing which varies in tone, not being thoroughly black all through, varies in the quality of its transparent lines and dots; and when a piece of paper or glass coated with sensitized gelatin is exposed to the action of such a negative it is affected according to the amount of light the negative allows to pass. After making a print on such paper or glass, it is placed in a dish of water and the surface allowed to swell, which it does in varying degrees, the portion unaffected by the light absorbing most water and swelling most, the hardened lines of the drawing not swelling at all. This swelled print is then placed in a frame, and a preparation of plaster is poured upon it to make a mould of its surface. When this has set and the gelatin has been removed, this mould is filled with a preparation of wax, which sets in a few minutes sufficiently for it to be released from its plaster mould. Additional wax is built up when necessary upon the “whites,” as they are technically called—that is, the passages which represent what will be the hollows in the block—so that these may be as deep as possible; and this wax mould is electrotyped in copper. The lines and dots of this copper block, which when finished is backed up with metal and mounted, vary slightly in height, the result being that the slightly lower dots do not come so closely in contact with the inking roller or with the paper, and so produce when printed a grey impression corresponding to the greyness of the original drawing.
The drawback to the use of the process is that it is about three times as costly as the ordinary process. It is a method much used for the reproduction of line and stipple engravings, where fine dots and lines are apt to be printed in delicate tones. The finest results by this method are producible, however, by omitting the plaster mould and wax-cast stages, and by coating the sensitized gelatin with plumbago or other impalpable metal preparation which will enable it to receive a copper deposit to qualify it to take its place in the electrotype's bath, and so to get the needed thin coating of copper from the surface of the gelatin itself; but this needs to be done with the greatest care, and is still more costly.
A non-photographic process of obtaining line blocks in relief has been for a long time successfully worked by Messrs Dawson. A Typographic Etching. brass plate is coated with a film or ground of wax upon which a tracing of the drawing to be reproduced may be rubbed down. By means of an etching needle the lines of the drawings are incised upon the thin wax ground down to the surface of the brass plate. A pencil of wax and a pencil of hot metal are then used to produce a flow of melted wax which drops from the wax pencil upon the ridges of wax between the lines and builds them up until they are of sufficient height. The risk that this wax may run into the incised lines has to be carefully guarded against, but skilful treatment manages so that it stops at the edges and does not run over. In maps and diagrams where lettering or figures are necessary, type is impressed into the wax with a very neat and precise result. By this means a mould is formed, an electrotype from which gives a really good relief block which may be printed with type.
The invention of line processes only stimulated the efforts to find out some means whereby tones might be reproduced on Half-tone Processes. blocks or plates that could be printed along with type in the ordinary rapid printing-press. It is only possible to approximate to the printing of a flat or graduated tone by producing a broken or granulated surface which shall present a series of lines or dots that, when inked and impressed upon paper, shall by the variations of proximity and size give the impression of an unbroken tone. This necessitates the lines or dots being so small that the eye shall not at a glance appreciate the broken-up character of the surface of the block. Many efforts resulted in the production of what is known as the screen, which itself was only made possible by the invention of ruling machines of a delicacy previously unknown.
A screen is made by coating a sheet of glass—which must be flawless both as to body and surface—with a composition analogous to the ground used by an etcher to coat his plate before drawing upon it with his needle. The glass so coated is placed in an automatic ruling machine, of which the ruling point is a diamond, and which can be adjusted so as to rule any number of lines from 50 to 300 to the inch. The lines are ruled diagonally on the glass, and at mathematically equal distances from each other. The sheet of glass, after ruling, is treated with hydrofluoric acid, and the lines where the ground is cleared away by the diamond point are etched or bitten into it. The plate is cleaned up and an opaque dark pigment rubbed into the lines. Two such ruled sheets of glass are sealed together face to face with Canada balsam, with the diagonally ruled lines crossing each other at right angles, the result being a grating or screen containing innumerable little squares of clear glass through which the light can pass, which it cannot do through the ruled lines, which are filled by the opaque pigment.
To produce a half-tone block from a picture, a black and white drawing in tone, or a photograph, a negative is exposed in the camera in the usual way, with this screen quite close to it but not in contact; and the subject is photographed on to the negative through the screen, and what is termed a “screen negative” is the result. It is a photograph of so much of the original as could affect the negative through the little clear squares of the screen, and represents the tones of it by innumerable dots and lines, the size and proximity of which are regulated by the fineness or coarseness of the screen used.
In the early days zinc was the metal used for these half-tone blocks; but experience showed that though more difficult to etch to the necessary depth, the closer, denser texture of copper rendered plates of this metal much more suitable for the production of the best blocks, and zinc now is used only for inferior blocks. Whichever metal may be used, a sheet of it, most carefully planished, is sensitized with a coating of gelatin or fish-glue and bichromate of potash, dried and exposed under the screen negative to the action of light, as in the ordinary method of photographic printing. The action of the light hardens the gelatin film, the portion not so hardened being soluble by water. The plate with the gelatin picture in lines and dots is exposed to heat and the image is burnt in on the surface of the metal like an enamel, which enables the photographic picture to resist the subsequent etching. The plate is placed in a bath of iron perchloride and etched until sufficient depth is obtained. Wherever the surface of the plate is free from the lines and dots, it is bitten away by the perchloride, and the lines and dots are left in relief. This first biting in the bath produces a rather flat general impression of the original, and is termed “rough etching.” To produce finer results, and to bring out the contrasts of black and white necessary to a good reproduction, the block has to go through processes of stopping out and rebiting similar to those of etching an intaglio plate. This “fine etching” calls for the artistic taste and judgment of the craftsman; and with a good photograph to work from the final quality of a block will depend largely upon its treatment by the line etcher. A substitute for the acid bath has been found in an acid blast. The acid is driven in the form of a spray with some force on to the surface of the prepared plate, which it etches more rapidly and more effectively than the bath.
One risk to be guarded against is the under biting of the lines and dots which form the printing surface. As soon as the acid has eaten its way downwards past the protecting surface film, it will attack the sides of the upstanding dots as well as the ground that supports them, with the result that they become weakened and rendered liable to break off in the process of printing, as well as to make the obtaining of electrotypes from the blocks a