Jump to content

Page:EB1911 - Volume 22.djvu/822

From Wikisource
This page has been proofread, but needs to be validated.
RADIOLARIA
805

from such a central capsule as that drawn in 4; each contains a crystal b and a nucleus a. 16. Two swarm-spores of Collozoum inerme, of the second kind, viz. devoid of crystals, and of two sizes, a macrospore and a microspore. They have been set free from central capsules with contents of a different appearance from that drawn in 4. a, nucleus. 17. Actinomma asterocanthion, Haeck.; one of the Peripylaea. Entire animal in optical section. a, nucleus; b, wall of the central capsule; c, innermost siliceous shell enclosed in the nucleus; c1, middle shell lying within the central capsule; c2, outer shell lying in the extracapsular protoplasm. Four radial siliceous spines holding the three spherical shells together are seen. The radial fibrillation of the protoplasm and the fine extracapsular pseudopodia are to be noted. 18. Amphilonche messanensis, Haeck.; one of the Acanthometridea. Entire animal as seen living.


Fig. IV.—Radiolaria. 1. Lithocircus annularis, Hertwig; one of the Monopylaea. Whole animal in the living state (optical section); a, nucleus; b, wall of the central capsule; c, yellow cells; d, perforated area of the central capsule (Monopylaea). 2. Cystidium inerme, Hertwig; one of the Monopylaea. Living animal. An example of a Monopylaeon destitute of skeleton. a, nucleus; b, capsule-wall; c, yellow cells in the extracapsular protoplasm. 3. Carpocanium diadema, Haeck.; optical section of the beehive-shaped shell to show the form and position of the protoplasmic body. a, the tri-lobed nucleus; b, the siliceous shell; c, oil-globules; d, the perforate area (pore-plate) of the central capsule. 4. Coelodendrum gracillimum, Haeck.; living animal, complete; one of the Tripylaea. a, the characteristic dark pigment (phaeodium) surrounding the central capsule b. The peculiar branched siliceous skeleton, consisting of hollow fibres, and the expanded pseudopodia are seen. 5. Central capsule of one of the Tripylaea, isolated, showing a, the nucleus; b, c, the inner and the outer laminae of the capsule wall; d, the chief or polar aperture; e, e, the two secondary apertures. 6, 7. Acanthometra claparedei, Haeck. 7 shows the animal in optical section, so as to exhibit the characteristic meeting of the spines at the central point as in all Acanthometridea; 6 shows the transition from the uninuclear to the multinuclear condition by the breaking up of the large nucleus. a, small nuclei; b, large fragments of the single nucleus; c, wall of the central capsule; d, extracapsular jelly (not protoplasm); e, peculiar intracapsular yellow cells. 8. Spongosphaera streptacantha, Haeck.; one of the Peripylaea. Siliceous skeleton not quite completely drawn on the right side. a, the spherical extracapsular shell (compare fig. III. 17), supporting very large radial spines which are connected by a spongy network of siliceous fibres. 9. Aulosphaera elegantissima, Haeck.; one of the Phaeodaria. Half of the spherical siliceous skeleton.


retain the archaic structure of the central capsule whilst developing a peculiar skeleton, and on the other hand to the Monopylaea and Phaeodaria, which have modified the capsule but retained the siliceous skeleton.

“The occasional total absence of any siliceous or acanthinous skeleton does not appear to be a matter of classificatory importance, since skeletal elements occur in close allies of those very few forms which are totally devoid of skeleton. Similarly it does not appear to be a matter of great significance that some forms (Polycyttaria) form colonies, instead of the central capsules separating from one another after fission has occurred.

“It is important to note that the skeleton of silex or acanthin does not correspond to the shell of other Sarcodina, which appears rather to be represented by the membranous central capsule. The skeleton does, however, appear to correspond to the spicules of Heliozoa, and there is an undeniable affinity between such a form as Clathrulina and the Sphaerid Peripylaea (such as Heliosphaera, fig. III. 14). The Radiolaria are, however, a very strongly marked group, definitely separated from all other Sarcodina by the membranous central capsule sunk in their protoplasm. Their differences inter se do not affect their essential structure. The variations in the chemical composition of the skeleton and in the perforation of the capsule do not appear superficially. The most obvious features in which they differ from one another relate to the form and complexity of the skeleton, a part of the organism so little characteristic of the group that it may be wanting altogether. It is not known how far the form-species and form-genera which have been distinguished in such profusion by Haeckel as the result of a study of the skeletons are permanent (i.e. relatively permanent) physiological species. There is no doubt that very many are local and conditional varieties, or even merely stages of growth, of a single Protean species. The same remark applies to the species discriminated among the shell-bearing Reticularia. It must not be supposed, however, that less importance is to be attached to the distinguishing and recording of such forms because we are not able to assert that they are permanent species.

“The streaming of the granules of the protoplasm has been observed in the pseudopodia of Radiolaria as in those of Heliozoa and Reticularia; it has also been seen in the deeper protoplasm; and granules have been definitely seen to pass through the pores of the central capsule from the intracapsular to the extracapsular protoplasm. A feeble vibrating movement of the pseudopodia has been occasionally noticed.

“The production of swarm-spores has been observed only in Acanthometra and in the Polycyttaria and Thalassicollidae, and only in the two latter groups have any detailed observations been made. Two distinct processes of swarm-spore production have been observed by Cienkowski, confirmed by Hertwig,—distinguished by the character of the resulting spores, which are called ‘crystalligerous’ and ‘isospores’ (fig. III. 15) in the one case, and ‘dimorphous’ or ‘anisospores’ in the other (fig. III. 16). In both processes the nucleated protoplasm within the central capsule breaks up by a more or less regular cell-division into small