It will be seen from these particulars—which are typical of what has happened not only on other British railways, but also on those of other countries—that much more space has to be provided and more weight hauled for each passenger than was formerly the case. Thus, on the Midland railway in 1885, each third-class passenger, supposing the carriage to have its full complement, was allowed 0·62 ft. of lineal length, and his proportion of the total weight was 5·7 cwt. Less than 20 years later the lineal length allowed each had increased to nearly 1·4 ft., and the weight to nearly 14 cwt. Passengers in sleeping cars appropriate still more space and weight; in Great Britain some of these cars, though 40 tons in weight and over 65 ft. in length, accommodate only 11 sleepers, each of whom thus occupies nearly 6 ft. of the length and requires over 3½ tons of dead weight to be hauled.
In America the long open double-bogie passenger cars, as originally introduced by Ross Winans on the Baltimore & Ohio railway, are universally in use. They are distinguished essentially from the British type of carriage by having in the centre of the body a longitudinal passage, about 2 ft. wide, which runs their whole length, and each car having communication with those on either side of it, the conductor, and also vendors of books, papers and cigars, are enabled to pass right through the train. The cars are entered by steps at each end, and are provided with lavatories and a supply of iced water. The length is ordinarily about 50 ft., but sometimes 80 or 90 ft. The seats, holding two persons, are placed transversely on each side of the central passage, and have reversible backs, so that passengers can always sit facing the direction in which the train is travelling. Cars of this saloon type have been introduced into England for use on railways which have adopted electric traction, but owing to the narrower loading gauge of British railways it is not usually possible to seat four persons across the width of the car for its whole length, and at the ends the seats have to be placed along the sides of the vehicle. A considerable amount of standing room is then available, and those who have to occupy it have been nicknamed “strap hangers,” from the fact that they steady themselves against the motion of the train by the aid of leather straps fixed from the roof for that purpose. Cars built almost entirely of steel, in which the proportion of wood is reduced to a minimum, are used on some electric railways, in order to diminish danger from fire, and the same mode of construction is also being adopted for the rolling stock of steam railways.
End doors opening on end platforms have always been characteristic of American passenger equipment. Their use Vestibules.secures a continuous passageway through the train, but is attended with some discomfort and risk when the train is in motion. The opening of the doors was apt to cause a disagreeable draught through the car in cold weather, and passengers occasionally fell from the open platform, or were blown from it, when the train was moving. To remedy these defects vestibules were introduced, to enclose the platform with a housing so arranged as to be continuous when the cars are made up into trains, and fitted with side doors for ingress and egress when the trains are standing. A second advantage of the vestibule developed in use, for it was found that the lateral swaying of the cars was diminished by the friction between the vestibule frames. The fundamental American vestibule patent, issued to H. H. Sessions of Chicago in November 1887, covered a housing in combination with a vertical metallic plate frame of the general contour of the central passage-way, which projected slightly beyond the line of the couplings and was held out by horizontal springs top and bottom, being connected with the platform housing by flexible connexions at the top and sides and by sliding plates below. A common form is illustrated in fig. 27. Subsequent improvements on the Sessions patent have resulted in a modified form of vestibule in which the housing is made the full width of the platform, though the contact plate and springs and the flexible connexions remain the same as before. The application of vestibules is practically limited to trains making long journeys, as it is an obstruction to the free ingress and egress of passengers on local trains that make frequent stops.
Fig. 27.—A “Vestibule”; the “lazy tongs” gate is folded away when two cars are coupled together, giving free passage from end to end of the train.
In the United States the danger of the stoves that used to be employed for heating the interiors of the cars has been Heating and lighting.realized, and now the most common method is by steam taken from the locomotive boiler and circulated through the train in a line of piping, rendered continuous between the cars by flexible coupling-hose. The same method is finding increased favour in Great Britain, to the super session of the old hot-water foot warmers. These in their simplest form are cans filled with water, which is heated by immersing them in a vessel containing boiling water. In some cases, however, they are filled with fused acetate of soda; this salt is solid when cold, but when the can containing it is heated by immersion in hot water it liquefies, and in the process absorbs heat which is given out again on the change of state back to solid. Such cans remain warm longer than those containing only hot water. On electric railways the trains are heated by electric heaters. As to lighting, the oil lamp has been largely displaced by gas and electricity. The former is often a rich oil-gas, stored in steel reservoirs under the coaches at a pressure of six or seven atmospheres, and passed through a reducing valve to the burners; these used to be of the ordinary fish-tail type, but inverted incandescent mantles are coming into increasing use. Gas has the disadvantage that in case of a collision its inflammability may assist any fire that may be started. Electric light is free from this drawback. The current required for it is generated by dynamos driven from the axles of the coaches. With “set” or “block” trains, that is, trains having their vehicles permanently coupled up, one dynamo may serve for the whole train, but usually a dynamo is provided for each coach, which is then an