Page:EB1911 - Volume 23.djvu/134

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ANIMALS]
REPRODUCTION
117

extensive that, if the whole body be cut in pieces, each portion may grow into a new organism. Such a mode of artificial propagation, familiar in horticultural operations, has been made use of in such animals as sponges, and has been performed experimentally in hydroids and some worms. In many Protozoa asexual reproduction by simple division is a normal event. In Coelentera it is common, the plane of division usually passing through the long axis of the body, as in Actinians and many Hydroids, or being horizontal, as in the repeated divisions by which medusae are produced from an asexual polyp; the new individual may separate completely, or serve to build up a colonial or compound organism. In some Turbellarians (Microstomum) and Chaetopods (Syllis, Myrianida, Nereis, Eunice viridis (the palolo-worm of Samoa), asexual reproduction occurs in a form that is partly fission and partly budding; portions are constricted transversely or laterally, very much smaller than the whole animal, and these grow out into new animals which may separate or remain attached in chains. In Salps, chains are formed sometimes by transverse constriction, sometimes by budding. True budding is much more common than fission; it occurs in Protozoa, Coelentera, Sponges, Polyzoa, Tunicates and some Flatworms and Chaetopods, the bud being a multicellular portion of the tissues which is partly or completely separated from the parent before it proliferates into the new form. In various larval stages of many animals, asexual reproduction by fission or budding may be produced experimentally or may occur naturally. It has been suggested that cases of identical twins in vertebrates and many monstrous forms, including even dermoid cysts, are due to embryonic asexual fission or budding. The artificial subdivision of young embryos has been performed successfully by several investigators (see Heredity). In Lumbricus trapezoides the gastrula stage of the embryo divides and each half produces a complete individual; and multiplication by budding is common at various stages of the life-history of many parasitic worms. Spore formation, or cellular budding, appears to be limited to the Protozoa amongst animals.

B. Sexual.—Apart from the special and probably secondary cases presently to be considered under the subheading parthenogenesis, sexual reproduction or amphimixis may be defined as the production of a new organism from a zygote, and a zygote may be defined as the cell resulting from the conjugation of two gametes or sexual cells derived from the specialized reproductive tissue of the parent or parents. In asexual reproduction by spore formation, the spore proliferates without the aid of another spore; in true sexual reproduction the gametes may be regarded as special kinds of spores which appear in two forms, the egg-cell, ovum or female gamete not proceeding to proliferate into a new organism until it has been stimulated by partial or complete fusion with the other form, the spermatozoon or male gamete. The act of fusion or conjugation in question is usually spoken of as fertilization, and the zygote, or starting-point of the new organism, is the fertilized egg-cell. Among protozoa and the lower plants there occur a series of forms of conjugation leading towards the specialized form characteristic of the sexual reproduction of higher animals. The conjugation may be isogamous, that is to say the conjugating cells may be actually or at least apparently indistinguishable. The fusion between the cells may be complete, or may concern only the nuclei. The conjugation may be followed by reproduction, or may apparently have no relation to reproduction. In true sexual reproduction the conjugation is heterogamous, i.e. the gametes are unlike; the fusion is chiefly nuclear, and the process is the prelude of the development of the zygote into the new organism.

In all the Metazoa the gametes arise from special reproductive tissues which are supposed to contain (see Heredity) the reproductive material or germ-plasm. In the lower (or simpler and possibly degenerate Metazoa) the reproductive or germinal tissue consists of a few cells, sometimes in a group, sometimes scattered and sometimes migratory; in the vast majority of the Metazoa the germinal tissue becomes aggregated in distinct organs, of which those that give rise to ova or female gametes are known as the ovaries, and those that give rise to the spermatozoa or male gametes are known as the testes. The ovary and the testis are the primary reproductive organs; the details of their anatomy and position in the various groups need not be discussed here (see Reproductive System).

The male gamete or spermatozoon was first seen in 1677 by Ludwig van Hammen, a pupil of A. Leeuwenhoek, with the microscope that had been constructed by his master. Leeuwenhoek, under the influence of the current preformationist ideas, interpreted these actively moving bodies in the seminal fluids as preformed germs and described them as animalcule spermetia or spermatozoa. Throughout the 18th century the general tendency was to regard them as parasites of no consequence in fertilization. In 1837 R. Wagner established that they were present in all sexually mature males and absent in infertile male hybrids, and in 1841 A. Kölliker showed that they were cells proliferated in the testes. The spermatozoon is one of the smallest of known cells, frequently being no more than one hundred thousandth of the size of the ovum, although the extraordinary case of a small Cypris has been recorded in which the spermatozoa are longer than the animal. It is produced in enormous quantities and relatively to other minute cells is extremely tenacious of life. It may retain its vitality in the male organism for a long time after it has become a separate cell, and may exist for lengthy periods in the female organism. The queen-bee is impregnated only once, and the spermatozoa may remain functional within her body for three years. Lord Avebury (Sir J. Lubbock) has described the case of a female ant which laid fertile eggs thirteen years after she had been impregnated. It is undoubted that in snakes, birds and many mammals, fertilization may not take place for many days after impregnation. The spermatozoa, with a few exceptions, are actively motile, being elongated in shape, with a vibratile tail sometimes provided with a swimming membrane. In a few cases, chiefly of crustaceans, the spermatozoa are spherical with radiating processes, but are capable of amoeboid movements. The cell nucleus is generally situated near the rounded or pointed extremity, with a centrosome immediately behind it, whilst the scanty protoplasm forms the body and vibratile tail; but there appears to be no general significance in the various configurations that occur amongst different animals. The process of spermatogenesis, or production of spermatozoa from the permanent cells of the testis, varies extremely amongst different animals and has been the subject of many elaborate investigations and much confusing nomenclature. Two factors are involved: first, the arrangements to produce a very large crop of cells so to provide for the enormous numbers of spermatozoa produced by most animals; and second, the final changes of shape and of nucleus by which the ripe spermatozoa arise from the indifferent testis-cells, and these processes may to a certain extent overlap. The point of general significance relates to the nuclear changes. The nuclear matter that occurs in the tissue cells of animals, when these cells divide, breaks up into a number of chromosomes constant for each kind of animal, and the final stage of cell division is such that each chromosome splits and contributes a half to each daughter cell, so that the latter come to contain the number of chromosomes peculiar to the animal in which they occur. In the case of spermatozoa, however, a “reducing” division occurs, in which the chromosomes instead of dividing distribute themselves equally between the two daughter cells, with the result that each of the latter contains only half the number peculiar to the species. In its simplest form, what occurs in the last stage of spermatogenesis is that one cell breaks up into four spermatozoa by two successive divisions, the first of which is normal and the second reducing. The nuclear matter of spermatozoa, therefore, contains half the number of chromosomes normal to the tissue cells of the species, and we shall see later that a similar reduction takes place in the formation of the egg. Further complications, however, exist, at least in certain forms. In 1891 H. Henking showed that in a Hemipteran insect of the genus Pyrrochoris, two kinds of spermatozoa are produced in equal numbers, and F. C. Paulmier