consolidate properly without-admixture; indeed they became
more intractable the more they were abraded by rolling. G. F.
Deacon of Liverpool advocated a binding composed of large
chips of trap rock or else of siliceous gravel from the size of
three-quarters of an inch down to that of a pin's head, together
with about one-fourth part of macadam sweepings obtained
in wet weather. This will enable the roller to consolidate the
road-metal in a third of the time required for broken stone
alone. The harder materials here suggested differ essentially
from the sand and dirt formerly used for binding, since they fill
up all the vacant spaces and cannot be washed down.
A new road is preferably finished by rolling, since in that
way the materials are consolidated with less waste, and wear
and tear of vehicles is saved. A I5-tO1'l steam-roller, 7 ft.
wide, giving upwards of 2 tons weight per foot can thoroughly
consolidate 1000 to 2000 sq. yds. of newly laid materials per
day.
A pitched foundation, as used by Telford, consists of fiat stones set on edge in courses across the road with the broader edges downwards. »All inequalities must be knocked off, and small stones and chips must be firmly pinned into the interstices with a hammer, so as'to form a regular convex surface with every stone fixed firmly in place. A foundation of cement concrete 6 in. thick was used by Sir ]. Macneill on the Highgate Archway (London) road on a bad clay bottom, and common lime concrete was subsequently used elsewhere. A bed of lias lime concrete 12 in. thick was laid as a. foundation in Southwark Street and on the Thames Embankment, but it is too expensive for a macadamized road under ordinary circumstances. Foundations of large and rough hard-core should be rolled down to a surface close enough to keep the finer pieces of road-metal from dropping down, so as to create hollows which, though they may escape the roller, will be detected by the laden wheel and by the pounding of the heavy hoof. But there is no foundation equal to sand, which has the property of spreading pressure over an enlarged area. A 12-in. bed of sand rolled down to 8 in. has been recommended, but military engineers have found that a layer of so little as 3 or 4 in. is sufficient as a foundation for macadam in very bad ground that has been rolled, or on an embankment that has had time to settle.
Tar Macadam.-Broken stone mixed with some bituminous composition has been found very suitable for suburban roads, and for towns where the nature of the traffic requires smooth roadways reasonably free from noise and dust. In its simplest form, tar macadam is made from a good hard limestone broken into the usual sizes, the fine chips being used for top-dressing. In a shed a large hearth is formed of stone flagging, under which the flues of a furnace are constructed, and upon the hearth the broken stone is spread in a layer just as thick as the heat may be able to penetrate, to dry off the moisture and make the stones distinctly hot. The load of an ordinary barrow is tipped on an iron plate and gas tar is poured over it (from 8 to 12 gals. per cubic yard), while a couple of men with shovels turn it over exactly as they would turn concrete. No more tar should be used than is required completely to blacken the whole surface of every stone; and when this has been done, the stone can be thrown upon the heap, where it may be kept for one or two months, under cover, to allow the volatile oils to evaporate. Fine siftings are treated in the same way. When it has been properly seasoned, the mass should assume a greenish lustre; and when cut into by a shovel, the particles will cling together and creep down slowly so that the heap is said to be “ alive.” In that state it may be used. The tar ought to be boiled, and if too thin, a little pitch may be added to it, though not enough to make the heap consolidate. A mixture of tar with pitch and creosote oil is used by more precise makers, one formula being 12 gals. tar, S cwt. pitch and 2 gals. creosote oil to a ton of stone. But these ingredients differ considerably in their chemical composition, and the proportions have to be varied according to experience. Moreover, as regards the tar and pitch used in the manufacture of pavements, the varieties that come directly from a vegetable source are liable to melt in hot and to become brittle in cold weather; coal tar is only moderately proof against these extremes. Tar macadam must be put down in dry weather. If the material seems too dry, hot tar may be applied as before, but only as an expedient, and with great economy, so that the pavement may not soften in the sun. Upon a well-rolled foundation of hard material a layer of the coarser macadam should be put and rolled, then a layer of the smaller grade. For a road of light trafhc a coat of the Hue siftings may be put down and heavily rolled to a finished surface. For a road of heavier traffic the second coat should be dressed before rolling with tarred stone of a gauge of three-quarters of an inch to an inch and a quarter, and rolled first with a roller of not more than ro or 12 cwt., then with one of 30 cwt. After the traffic has been turned on the road for a few days it should again be rolled as heavily as may be necessary to restore any parts that have been disturbed. But such roads are often consolidated by steam-rollers of ro or 15 tons. For refacing an old road the prongs attached tg a steam-roller will easily lift the old layer. Small depressions may be Well tarred and levelled up with fine stuff, and the whole surface may be dressed every three years with tar and a fresh coat of fine chips. If the surface of the road is irregular, water will hang upon it, and frost may cause it to become slippery. The lack of affinity between granite and bitumen prevents the use of tar 'macadam upon roads of heavy trafhc.
Concrete M acadam.-Rocks like granite and syenite may be used in combination with Portland cement. The ingredients are mixed in about the proportion of four parts of broken stone that has first been well wetted, one and a quarter or two parts of clean sharp sand, and one of cement put on in two layers, the second being rolled by hand to the required shape and to a good surface. It should remain for two or three weeks to dry and set. Want of elasticity may be urged against concrete macadam, and it is productive of dust, but in some cases it has proved satisfactory.
Gravel Roads.-Smooth rounded gravel is unsuitable for roads unless a large proportion of it is broken, and about an eighth part of ferruginous clay added for binding. Rough pit gravel that will consolidate under the roller may be applied in two or more layers, but each must be of similar composition, or the smaller stuff will work downwards. A gravel road should be always under inspection, and repairs should be done without delay. A track for equestrian exercise should be made of hoggin or fine gravel, that will remain soft when raked or harrowed and watered. It should be well drained. A foundation of rough hard core will let the hoggin pass down into it, so that the hard core will appear at the surface. The best material is rough chalk sufficiently rolled to stop the gravel while draining off the surface water.
Stone Pavements.-Early pitched roadways consisted of pebbles or rounded boulders (“cobblestones ”) bedded in the natural surface or in sand or gravel. The next step in advance was to employ roughly squared blocks; but the wide and irregular joints admitted the water to the subsoil, and the mud worked up and the stones sank irregularly under the traffic. Telford, who was called upon to report on the street pavements of the parish of Hanover Square in 1824, saw the necessity of cutting off all connexion between the subsoil and the paving stones. He recommended a bed of about 6 in. of clean river ballast, rendered compact by being travelled upon for some time before the paving was laid, but he subsequently considered that nothing short of 12 in. of broken stone, put on in layers 4 in. thick and completely consolidated by carriages passing over them, would answer the purpose. He recommended paving stones of considerable depth and of from 4% to 6 or 7% in. in breadth for the greatest thoroughfares, and he pointed out the importance of working the stones flat on the face and square on all sides, so as to joint close and preserve the bed or base as nearly as possible of the same size as the face, and of carefully placing together in the same course stones of equal