Page:EB1911 - Volume 23.djvu/837

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
796
RUBBER
  


of composition or by condensation with the elimination of the elements of water. The effect of chemical agents in producing coagulation are in consonance with what is known of other instances of polymeric or condensation changes, whilst the fact that the collection of globules separated by creaming after thorough washing, and therefore removal of all proteid, is susceptible of solidification into caoutchouc by a merely mechanical act such as churning, strongly supports the view that the character of the change is distinct from that of any alteration which may occur in the proteid constituents of the latex.

The existence of caoutchouc or rubber was first observed soon after the discovery of America. It was noticed that certain Indian tribes of South America played with a ball composed of a resilient and elastic substance, which afterwards was found to possess the power of removing lead pencil marks from paper and came into commerce as “Indian Rubber.” It was not until the middle of the 18th century that the trees which yielded caoutchouc were identified, chiefly by French observers. La Condamine ascertained the nature of the tree, now known as Hevea brasiliensis, from which the Para rubber of S. America was obtained, whilst a little later Fresnau and Aublet described the Euphorbiaceous trees which furnished the rubber of Guiana.

The methods adopted by the natives in S. America and in Mexico for incising the trees and obtaining the rubber are exceedingly primitive, but survive with little modification at the present day.

Statistics of Rubber Production.—Until recently rubber was obtained almost exclusively from the tropical forests of S. and Central America, E. and W. Africa and Asia, being the produce of naturally occurring trees and vines. The increase in the demand, for which the employment of rubber tires is largely responsible, has given an increased stimulus to the production of “wild” rubber, with the result that trees and vines have been recklessly cut and destroyed, and in some instances vast regions, as in the S. Sudan, have been nearly entirely denuded of rubber vines. This has led to restrictive measures, the vines being tapped under definite regulations as to the manner and time of tapping, and also to requirements as to replanting vines to take the place of those which have been injured or destroyed, certain areas being periodically closed. Such measures, which are now in operation in the French Sudan, the Congo and in German W. and E. Africa, can, however, only be enforced by special administrative machinery and at considerable expense, and this legislative action can only be regarded as temporary and preliminary to the establishment of plantations of rubber trees, which are not only easier to control, but the trees are less liable to injury from careless tapping. In Africa it seems probable that the production of rubber from vines is likely to be entirely superseded in process of time, and replaced by the plantations of trees which are already being established in those districts in which careful experiment has determined the kind of rubber tree best adapted to the locality. The forests of tropical America have suffered similarly, trees having been injured or destroyed and in some cases cut down in order to secure the immediate increase of supply which was called for by a considerable rise in value. The result has been that in the forests of Brazil and Mexico the conservation of rubber trees has received greater attention, whilst new and extensive areas are planted in S. and Central America. The wild rubber of S. and Central America is still the principal source of the rubber supply of the world, and is likely to continue to be so for many years to come. Although the cost of transport from the remote forest regions of some districts is a serious consideration, this is not likely to be operative in reducing production until there has been a considerable and permanent fall in price, by which time new areas in those countries in which planting is now taking place will probably have come into bearing.

The enormous increase in the commercial demand for rubber and the probability of the continuance of this increase in view of the great variety of purposes to which the material can be applied, has led to great activity in rubber planting in other parts of the world, especially in Ceylon and the Malay Peninsula and Archipelago, where the Para rubber trees (Hevea brasiliensis) has been successfully introduced, and numerous plantations, many of which have not been in existence for more than ten or fifteen years, are now contributing to the world’s supply. This rubber is known as “Plantation” rubber in contradistinction to the “wild” rubber.

“Plantation” Para rubber from Ceylon and the Malay States has brought prices equal to and often exceeding those of fine Para rubber from Brazil. This is largely due to the improved methods of preparing the rubber practised by the planters of Ceylon and Malaya, which lead to the exclusion of the impurities usually found in “wild” rubber. Para rubber from Brazil generally contains about 15% of water, whilst “plantation” Para is usually nearly dry and contains 1% of water or less. It would appear, however, that the finest “wild” Para rubber as a rule possesses greater tensile strength than the “plantation” rubber. This has been ascribed by some to the presence in “wild” rubber of certain impurities derived either from the latex or introduced during the preparation of the rubber which are thought to enhance the physical properties of the caoutchouc. It is more probable, however, that the superiority of the “wild” Para is principally due to the greater age of the forest trees from which the rubber is obtained, many of which are from thirty to fifty years old. It is well known that the Hevea tree usually furnishes very inferior rubber if tapped before it is six or seven years old, and there is evidence to show that the quality of the rubber improves with the age of the tree. The oldest of the plantation trees of Ceylon and Malaya are not much more than twelve years old, whilst it is to be feared that immature trees are often tapped and their latex mixed with that of older trees before coagulation, thus forming inferior rubber. It is therefore to be expected that as time goes on the quality of “plantation” rubber will improve, and there would seem to be no reason why it should not eventually be fully equal to that of the “wild” rubber.

In 1909 the total production of rubber is stated to have been about 70,000 tons, of which more than one-half came from tropical America, about one-third from Africa, whilst the remainder was chiefly of Asiatic origin, including “plantation” rubber from Ceylon and Malaya, which amounted to about 3000 tons.

Chiefly owing to the supplies of “wild” rubber which are still available, comparatively little has been done until recently in establishing plantations either in Africa or in tropical America, but in Asia, including Ceylon, India and Malaya, in which there are relatively few important naturally-occurring rubber plants, there has been for some years great activity in forming plantations of rubber trees introduced mainly from tropical America, and there are now many millions sterling of British capital invested in companies established to form rubber plantations chiefly in Ceylon and Malaya. Each year should therefore show an increase in the production of plantation rubber. No trustworthy estimate of the rate of the increase of production can, however, be formed, as several uncertain economic factors have to be taken into account. Among these are the precise extent of demand, the limit of the inevitable fall in price with largely increased production, the cost of labour as increasing amounts are required, and the effect of changed conditions on the output of “wild” rubber and the competition of the new plantations which are being established in tropical America.

There can be little doubt that with a fall in price further uses for rubber would arise, leading to an increased demand, and among them may be mentioned its utilization as a road material. Difficulties in the supply of labour in the East may hinder the further development of the rubber-planting industry, especially at a period when a reduction in the cost of production may be the chief problem. In 1909 the average cost of producing “plantation” rubber in Ceylon and Malaya