applying the theorem (7) to evaluate this expression, we have
(
−
1
)
n
r
n
+
1
n
!
∂
n
∂
z
n
1
r
=
(
2
n
)
!
2
n
n
!
n
!
1
r
n
{
1
−
r
2
∇
2
2.2
n
−
1
+
r
4
∇
4
2.4.2
n
−
1.2
n
−
3
−
}
z
n
=
(
2
n
)
!
2
n
n
!
n
!
{
μ
n
−
n
(
n
−
1
)
2.2
n
−
1
μ
n
−
2
+
…
}
,
{\displaystyle {\begin{aligned}{\frac {(-1)^{n}r^{n+1}}{n!}}{\frac {\partial ^{n}}{\partial z^{n}}}{\frac {1}{r}}&={\frac {(2n)!}{2^{n}n!n!}}{\frac {1}{r^{n}}}\left\{1-{\frac {r^{2}\nabla ^{2}}{2.2n-1}}+{\frac {r^{4}\nabla ^{4}}{2.4.2n-1.2n-3}}-\right\}z^{n}\\&={\frac {(2n)!}{2^{n}n!n!}}\left\{\mu ^{n}-{\frac {n(n-1)}{2.2n-1}}\mu ^{n-2}+\dots \right\},\end{aligned}}}
the expression on the right side is
P
n
(
μ
)
{\displaystyle P^{n}(\mu )}
, the zonal surface harmonic; we have therefore
P
n
(
μ
)
=
(
−
1
)
n
r
n
+
1
n
!
∂
n
∂
z
n
1
r
.
{\displaystyle P_{n}(\mu )={\frac {(-1)^{n}r^{n+1}}{n!}}{\frac {\partial ^{n}}{\partial z^{n}}}{\frac {1}{r}}.}
The zonal harmonic has therefore all its poles coincident with
the z axis. Next, suppose n - m axes coincide with the z axis,
and that the remaining m axes are distributed symmetrically in
the plane of x , y at intervals
π
/
m
{\displaystyle \pi /m}
, the direction cosines of one of
them being
cos
α
,
sin
α
,
0
{\displaystyle \cos \alpha ,\sin \alpha ,0}
. We have
∏
0
m
−
1
{
cos
(
α
+
r
π
m
)
∂
∂
x
+
sin
(
α
+
r
π
m
)
∂
∂
y
}
=
1
2
m
∏
{
e
i
(
α
+
r
π
m
)
(
∂
∂
x
−
i
∂
∂
y
)
+
e
−
i
(
α
+
r
π
m
)
(
∂
∂
x
+
i
∂
∂
y
)
}
.
{\displaystyle {\begin{aligned}\prod _{0}^{m-1}\left\{\cos \left(\alpha +{\frac {r\pi }{m}}\right){\frac {\partial }{\partial x}}+\sin \left(\alpha +{\frac {r\pi }{m}}\right){\frac {\partial }{\partial y}}\right\}&={\frac {1}{2^{m}}}\prod {\Bigl \{}e^{i\left(\alpha +{\frac {r\pi }{m}}\right)}\left({\frac {\partial }{\partial x}}-i{\frac {\partial }{\partial y}}\right)\\&+e^{-i\left(\alpha +{\frac {r\pi }{m}}\right)}\left({\frac {\partial }{\partial x}}+i{\frac {\partial }{\partial y}}\right){\Bigr \}}.\end{aligned}}}
Let
ξ
=
x
+
i
y
,
η
=
x
−
i
y
{\displaystyle \xi =x+iy,\eta =x-iy}
, the above product becomes
∏
0
m
−
1
{
e
i
(
α
+
r
π
m
)
∂
∂
ξ
+
e
−
i
(
α
+
r
π
m
)
∂
∂
η
}
{\displaystyle \prod _{0}^{m-1}\left\{e^{i\left(\alpha +{\frac {r\pi }{m}}\right)}{\frac {\partial }{\partial \xi }}+e^{-i\left(\alpha +{\frac {r\pi }{m}}\right)}{\frac {\partial }{\partial \eta }}\right\}}
which is equal to
e
(
m
−
1
)
i
π
2
∏
{
e
m
i
α
(
∂
∂
ξ
)
m
−
e
−
m
i
α
(
∂
∂
η
)
m
}
{\displaystyle e^{(m-1){\frac {i\pi }{2}}}\prod \left\{e^{mi\alpha }\left({\frac {\partial }{\partial \xi }}\right)^{m}-e^{-mi\alpha }\left({\frac {\partial }{\partial \eta }}\right)^{m}\right\}}
;
when
α
=
0
,
π
2
m
{\displaystyle \alpha =0,{\frac {\pi }{2m}}}
,
this becomes
e
(
m
−
1
)
i
π
2
{
(
∂
∂
ξ
)
m
−
(
−
1
)
m
(
∂
∂
η
)
m
}
{\displaystyle e^{(m-1){\frac {i\pi }{2}}}\left\{\left({\frac {\partial }{\partial \xi }}\right)^{m}-(-1)^{m}\left({\frac {\partial }{\partial \eta }}\right)^{m}\right\}}
and
e
(
m
−
1
)
i
π
2
[
(
∂
∂
ξ
)
m
+
(
−
1
)
m
(
∂
∂
η
)
m
]
{\displaystyle e^{(m-1){\frac {i\pi }{2}}}\left[\left({\frac {\partial }{\partial \xi }}\right)^{m}+(-1)^{m}\left({\frac {\partial }{\partial \eta }}\right)^{m}\right]}
.
From (7), we find
∂
n
−
m
∂
z
n
−
m
(
∂
∂
x
±
i
∂
∂
y
)
m
1
r
=
(
2
n
)
!
2
n
n
!
1
r
2
n
+
1
[
1
−
r
2
Δ
2
2.2
n
−
1
+
…
]
z
n
−
m
(
x
±
i
y
)
m
=
(
−
1
)
n
(
2
n
)
!
2
n
n
!
1
r
n
+
1
(
cos
m
ϕ
±
i
sin
m
ϕ
)
sin
m
θ
{
cos
n
−
m
θ
−
(
n
−
m
)
(
n
−
m
−
1
)
2.2
n
−
1
cos
n
−
m
−
2
+
…
θ
}
{\displaystyle {\begin{aligned}{\frac {\partial ^{n-m}}{\partial z^{n-m}}}\left({\frac {\partial }{\partial x}}\pm i{\frac {\partial }{\partial y}}\right)^{m}{\frac {1}{r}}&={\frac {(2n)!}{2^{n}n!}}{\frac {1}{r^{2n+1}}}\left[1-{\frac {r^{2}\Delta ^{2}}{2.2n-1}}+\dots \right]z^{n-m}(x\pm iy)^{m}\\&=(-1)^{n}{\frac {(2n)!}{2^{n}n!}}{\frac {1}{r^{n+1}}}(\cos m\phi \pm i\sin m\phi )\sin ^{m}\theta {\Bigl \{}\cos ^{n-m}\theta \\&-{\frac {(n-m)(n-m-1)}{2.2n-1}}\cos ^{n-m-2}+\dots \theta {\Bigr \}}\end{aligned}}}
hence
∂
n
−
m
∂
z
n
−
m
(
∂
∂
x
±
i
∂
∂
y
)
m
1
r
=
(
−
1
)
n
(
n
−
m
)
!
r
n
+
1
(
cos
m
ϕ
±
i
sin
m
ϕ
)
P
n
m
(
cos
θ
)
{\displaystyle {\frac {\partial ^{n-m}}{\partial z^{n-m}}}\left({\frac {\partial }{\partial x}}\pm i{\frac {\partial }{\partial y}}\right)^{m}{\frac {1}{r}}=(-1)^{n}{\frac {(n-m)!}{r^{n+1}}}(\cos m\phi \pm i\sin m\phi )P_{n}^{m}(\cos \theta )}
as we see on referring to (4); we thus obtain the formulae
∂
n
−
m
∂
z
n
−
m
{
(
∂
∂
ξ
)
m
+
(
∂
∂
η
)
m
}
1
r
=
(
−
1
)
n
(
n
−
m
)
!
2
m
−
1
r
n
+
1
cos
m
ϕ
P
n
m
(
cos
θ
)
{\displaystyle {\frac {\partial ^{n-m}}{\partial z^{n-m}}}\left\{\left({\frac {\partial }{\partial \xi }}\right)^{m}+\left({\frac {\partial }{\partial \eta }}\right)^{m}\right\}{\frac {1}{r}}=(-1)^{n}{\frac {(n-m)!}{2^{m-1}r^{n+1}}}\cos m\phi P_{n}^{m}(\cos \theta )}
∂
n
−
m
∂
z
n
−
m
{
(
∂
∂
ξ
)
m
−
(
∂
∂
η
)
m
}
1
r
=
(
−
1
)
n
(
n
−
m
)
!
2
m
−
1
r
n
+
1
sin
m
ϕ
P
n
m
(
cos
θ
)
{\displaystyle {\frac {\partial ^{n-m}}{\partial z^{n-m}}}\left\{\left({\frac {\partial }{\partial \xi }}\right)^{m}-\left({\frac {\partial }{\partial \eta }}\right)^{m}\right\}{\frac {1}{r}}=(-1)^{n}{\frac {(n-m)!}{2^{m-1}r^{n+1}}}\sin m\phi P_{n}^{m}(\cos \theta )}
It is thus seen that the tesseral harmonics of degree n and order
m are those which have
n
−
m
{\displaystyle n-m}
axes coincident with the z axis, and
the other m axis distributed in the equatorial plane, at angular
intervals
π
/
m
{\displaystyle \pi /m}
. The sectorial harmonics have all their axes in the
equatorial plane.
8. Determination of the Poles of a given Harmonic. —It has been
shown that a spherical harmonic
Y
n
(
x
,
y
,
z
)
{\displaystyle Y_{n}(x,y,z)}
can be generated by means
of an operator
f
n
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
{\displaystyle f_{n}\left({\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)}
acting upon
1
r
{\displaystyle {\frac {1}{r}}}
,
the function
f
n
{\displaystyle f_{n}}
being so chosen that
Y
n
(
x
,
y
,
z
)
=
(
−
1
)
n
(
2
n
)
!
2
n
n
!
{
1
−
r
2
∇
2
2.2
n
−
1
+
…
}
f
n
(
x
,
y
,
z
)
;
{\displaystyle Y_{n}(x,y,z)=(-1)^{n}{\frac {(2n)!}{2^{n}n!}}\left\{1-{\frac {r^{2}\nabla ^{2}}{2.2n-1}}+\dots \right\}f_{n}(x,y,z);}
this relation shows that if an expression of the form
(
x
2
+
y
2
+
2
)
f
n
−
2
(
x
,
y
,
z
)
{\displaystyle (x^{2}+y^{2}+^{2})f_{n-2}(x,y,z)}
is added to
f
n
(
x
,
y
,
z
)
{\displaystyle f_{n}(x,y,z)}
, the harmonic
Y
n
(
x
,
y
,
z
)
{\displaystyle Y_{n}(x,y,z)}
is unaltered; thus
if
Y
n
{\displaystyle Y_{n}}
be regarded as given,
f
n
(
x
,
y
,
z
)
=
0
{\displaystyle f_{n}(x,y,z)=0}
, is not uniquely determined,
but has an indefinite number of values differing by multiples
of
x
2
+
y
2
+
z
2
{\displaystyle x^{2}+y^{2}+z^{2}}
. In order to determine the poles of a given harmonic,
f
n
{\displaystyle f_{n}}
must be so chosen that it is resolvable into linear factors; it will
be shown that this can be done in one, and only one, way, so that
the poles are all real.
If x , y , z are such as to satisfy the two equations
Y
n
(
x
,
y
,
z
)
=
0
{\displaystyle Y_{n}(x,y,z)=0}
,
x
2
+
y
2
+
z
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}=0}
, the equation
f
n
(
x
,
y
,
z
)
{\displaystyle f_{n}(x,y,z)}
is also satisfied; the problem
of determining the poles is therefore equivalent to the algebraical
one of reducing
Y
n
{\displaystyle Y_{n}}
to the product of linear factors by means of
the relation
x
2
+
y
2
+
z
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}=0}
, between the variables. Suppose
Y
n
(
x
,
y
,
z
)
=
A
∏
s
=
1
m
(
l
s
x
+
m
s
y
+
n
s
z
)
+
(
x
2
+
y
2
+
z
2
)
V
n
−
2
(
x
,
y
,
z
)
,
{\displaystyle Y_{n}(x,y,z)=A\prod _{s=1}^{m}(l_{s}x+m_{s}y+n_{s}z)+(x^{2}+y^{2}+z^{2})V_{n-2}(x,y,z),}
we see that the plane
l
s
x
+
m
s
y
+
n
s
z
=
0
{\displaystyle l_{s}x+m_{s}y+n_{s}z=0}
passes through two of the
2n generating lines of the imaginary cone
x
2
+
y
2
+
z
2
=
0
,
{\displaystyle x^{2}+y^{2}+z^{2}=0,}
in which
that cone is intersected by the cone
Y
n
(
x
,
y
,
z
)
=
0
{\displaystyle Y_{n}(x,y,z)=0}
. Thus a pole
(
l
s
,
m
s
,
n
s
)
{\displaystyle (l_{s},m_{s},n_{s})}
is the pole with respect to the cone
x
2
+
y
2
+
z
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}=0}
, of a
plane passing through two of the generating lines; the number
of systems of poles is therefore
n
(
2
n
−
1
)
{\displaystyle n(2n-1)}
, the number of ways of
taking the 2n generating lines in pairs. Of these systems of poles,
however, only one is real, viz. that in which the lines in each pair
correspond to conjugate complex roots of the equations
Y
n
=
0
{\displaystyle Y_{n}=0}
,
x
2
+
y
2
+
z
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}=0}
. Suppose
x
α
1
+
i
β
1
=
y
α
2
+
i
β
2
=
z
α
2
+
i
β
2
{\displaystyle {\frac {x}{\alpha _{1}+i\beta _{1}}}={\frac {y}{\alpha _{2}+i\beta _{2}}}={\frac {z}{\alpha _{2}+i\beta _{2}}}}
gives one generating line, then the conjugate one is given by
x
α
1
−
i
β
1
=
y
α
2
−
i
β
2
=
z
α
2
−
i
β
2
{\displaystyle {\frac {x}{\alpha _{1}-i\beta _{1}}}={\frac {y}{\alpha _{2}-i\beta _{2}}}={\frac {z}{\alpha _{2}-i\beta _{2}}}}
and the corresponding factor
l
x
+
m
y
+
n
z
{\displaystyle lx+my+nz}
is
|
x
y
z
α
1
+
i
β
1
α
2
+
i
β
2
α
3
+
i
β
3
α
1
−
i
β
1
α
2
−
i
β
2
α
3
−
i
β
3
|
{\displaystyle {\begin{vmatrix}x&y&z\\\alpha _{1}+i\beta _{1}&\alpha _{2}+i\beta _{2}&\alpha _{3}+i\beta _{3}\\\alpha _{1}-i\beta _{1}&\alpha _{2}-i\beta _{2}&\alpha _{3}-i\beta _{3}\\\end{vmatrix}}}
which is real. It is obvious that if any non-conjugate pair of
roots is taken, the corresponding factor, and therefore the pole, is
imaginary. There is therefore only one system of real poles of a
given harmonic, and its determination requires the solution of an
equation of degree 2n . This, theorem is due to Sylvester (Phil. Mag.
(1876), 5th series, vol. ii., "A Note on Spherical Harmonics ").
9. Expression for the Zonal Harmonic with any Axis .—The zonal
surface harmonic, whose axis is in the direction
x
′
r
′
,
y
′
r
′
,
z
′
r
′
{\displaystyle {\frac {x'}{r'}},{\frac {y'}{r'}},{\frac {z'}{r'}}}
, is
P
n
(
x
x
′
+
y
y
′
+
z
z
′
r
r
′
)
{\displaystyle P_{n}\left({\frac {xx'+yy'+zz'}{rr'}}\right)}
or
P
n
(
cos
θ
cos
θ
′
+
sin
θ
sin
θ
′
cos
ϕ
−
ϕ
′
)
{\displaystyle P_{n}(\cos \theta \cos \theta '+\sin \theta \sin \theta '\cos \phi -\phi ')}
; this is expressible as a
linear function of the system of zonal, tesseral, and sectorial harmonics
already found. It will be observed that it is symmetrical
with respect to
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
and
(
x
′
,
y
′
,
z
′
)
{\displaystyle (x',y',z')}
, and must thus be capable of
being expressed in the form
a
0
P
n
(
cos
θ
)
P
n
(
cos
θ
′
)
+
∑
1
n
a
m
P
n
m
(
cos
θ
)
P
n
m
(
cos
θ
′
)
cos
m
(
ϕ
−
ϕ
′
)
{\displaystyle a_{0}P_{n}(\cos \theta )P_{n}(\cos \theta ')+\sum _{1}^{n}a_{m}P_{n}^{m}(\cos \theta )P_{n}^{m}(\cos \theta ')\cos m(\phi -\phi ')}
and it only remains to determine the co-efficients
a
0
,
a
1
,
…
,
a
m
,
…
a
n
{\displaystyle a_{0},a_{1},\dots ,a_{m},\dots a_{n}}
To find this expression, we transform
(
x
′
x
+
y
′
y
+
z
′
z
)
n
{\displaystyle (x'x+y'y+z'z)^{n}}
, where
x , y , z satisfy the condition
x
2
+
y
2
+
z
2
=
0
{\displaystyle x^{2}+y^{2}+z^{2}=0}
; writing
ξ
=
x
+
i
y
,
η
=
x
−
i
y
,
ξ
′
=
x
′
+
i
y
′
,
η
′
=
x
′
−
i
y
′
{\displaystyle \xi =x+iy,\eta =x-iy,\xi '=x'+iy',\eta '=x'-iy'}
, we have
(
x
x
′
+
y
y
′
+
z
z
′
)
m
=
(
1
2
η
′
ξ
+
1
2
ξ
′
η
+
z
z
′
)
n
{\displaystyle (xx'+yy'+zz')^{m}=({\frac {1}{2}}\eta '\xi +{\frac {1}{2}}\xi '\eta +zz')^{n}}
which equals
(
x
x
′
+
y
y
′
+
z
z
′
)
n
=
(
z
z
′
)
n
+
∑
∑
n
!
a
!
b
!
(
n
−
a
−
b
)
!
{
η
′
a
ξ
′
b
η
b
ξ
b
+
η
′
b
ξ
′
a
ξ
b
η
a
2
a
+
b
}
(
z
z
′
)
n
−
a
−
b
{\displaystyle (xx'+yy'+zz')^{n}=(zz')^{n}+\sum \sum {\frac {n!}{a!b!(n-a-b)!}}\left\{{\frac {\eta '^{a}\xi '^{b}\eta ^{b}\xi ^{b}+\eta '^{b}\xi '^{a}\xi ^{b}\eta ^{a}}{2^{a+b}}}\right\}(zz')^{n-a-b}}
the summation being taken for all values of a and b , such that
a
+
b
≤
n
{\displaystyle a+b\leq n}
,
a
>
b
{\displaystyle a>b}
; the values
a
=
0
,
b
=
0
{\displaystyle a=0,b=0}
corresponding to the term
(
z
z
′
)
n
{\displaystyle (zz')^{n}}
. Using the relation
ξ
η
=
−
z
2
{\displaystyle \xi \eta =-z^{2}}
, this becomes
(
x
x
′
+
y
y
′
+
z
z
′
)
n
=
(
z
z
′
)
n
+
∑
∑
(
−
1
)
b
2
a
+
b
n
!
a
!
b
!
(
n
−
a
−
b
)
!
(
η
′
ξ
′
)
b
z
′
n
−
a
−
b
{
(
η
′
ξ
)
a
−
b
+
(
ξ
′
η
)
a
−
b
}
z
n
−
a
+
b
,
{\displaystyle {\begin{aligned}(xx'+yy'+zz')^{n}=(zz')^{n}+\sum \sum &{\frac {(-1)^{b}}{2^{a+b}}}{\frac {n!}{a!b!(n-a-b)!}}(\eta '\xi ')^{b}z'^{n-a-b}\\&\{(\eta '\xi )^{a-b}+(\xi '\eta )^{a-b}\}z^{n-a+b},\end{aligned}}}
putting
a
−
b
=
m
{\displaystyle a-b=m}
, the coefficient of
ξ
m
z
n
−
m
{\displaystyle \xi ^{m}z^{n-m}}
on the right side is
∑
(
−
1
)
b
2
m
+
2
b
n
!
b
!
(
m
+
b
)
!
(
n
−
m
−
2
b
)
!
(
ξ
′
η
′
)
b
η
′
m
z
′
n
−
m
−
2
b
,
{\displaystyle \sum {\frac {(-1)^{b}}{2^{m+2b}}}{\frac {n!}{b!(m+b)!(n-m-2b)!}}(\xi '\eta ')^{b}\eta '^{m}z'^{n-m-2b},}
from
b
=
0
{\displaystyle b=0}
to
b
=
1
2
(
n
−
m
)
{\displaystyle b={\frac {1}{2}}(n-m)}
, or
1
2
(
n
−
m
−
1
)
{\displaystyle {\frac {1}{2}}(n-m-1)}
, according as
n
−
m
{\displaystyle n-m}
is even or odd. This coefficient is equal to
n
!
2
m
m
!
(
n
−
m
)
!
(
x
′
−
i
y
′
)
m
{
z
′
n
−
m
−
(
n
−
m
)
(
n
−
m
−
1
)
2.2
m
+
2
z
′
n
−
m
−
2
(
x
′
2
+
y
′
2
)
+
(
n
−
m
)
(
n
−
m
−
1
)
(
n
−
m
−
2
)
(
n
−
m
−
3
)
2.4.2
m
+
2.2
m
+
3
z
′
n
−
m
−
4
(
x
′
2
+
y
′
2
)
2
−
}
{\displaystyle {\begin{aligned}&{\frac {n!}{2^{m}m!(n-m)!}}(x'-iy')^{m}{\Bigl \{}z'^{n-m}-{\frac {(n-m)(n-m-1)}{2.2m+2}}z'^{n-m-2}(x'^{2}+y'^{2})\\&+{\frac {(n-m)(n-m-1)(n-m-2)(n-m-3)}{2.4.2m+2.2m+3}}z'^{n-m-4}(x'^{2}+y'^{2})^{2}-{\Bigr \}}\end{aligned}}}
in order to evaluate this coefficient, put
z
=
1
{\displaystyle z=1}
,
x
′
=
i
cos
α
{\displaystyle x'=i\cos \alpha }
,
y
′
=
i
sin
α
{\displaystyle y'=i\sin \alpha }
, then this coefficient is that of
(
i
cos
α
+
sin
α
)
m
{\displaystyle (i\cos \alpha +\sin \alpha )^{m}}
, or of
i
m
e
−
m
i
α
{\displaystyle i^{m}e^{-mi\alpha }}
in the expansion of
(
z
′
+
i
x
′
cos
α
+
i
y
′
sin
α
)
n
{\displaystyle (z'+ix'\cos \alpha +iy'\sin \alpha )^{n}}
in powers of
e
−
i
α
{\displaystyle e^{-i\alpha }}
and
e
i
α
{\displaystyle e^{i\alpha }}
, this has been already found, thus the coefficient is
n
!
(
n
+
m
)
!
e
−
i
m
ϕ
′
P
n
m
(
cos
θ
′
)
r
′
n
.
{\displaystyle {\frac {n!}{(n+m)!}}e^{-im\phi '}P_{n}^{m}(\cos \theta ')r'^{n}.}
Similarly the coefficient of
η
m
z
n
−
m
{\displaystyle \eta ^{m}z^{n-m}}
is
n
!
(
n
+
m
!
)
e
+
i
m
ϕ
′
P
n
m
(
cos
θ
′
)
r
′
n
;
{\displaystyle {\frac {n!}{(n+m!)}}e^{+im\phi '}P_{n}^{m}(\cos \theta ')r'^{n};}
hence we have
1
r
′
n
(
x
x
′
+
y
y
′
+
z
z
′
)
n
=
z
n
P
n
m
(
cos
θ
′
)
+
n
!
∑
1
n
P
n
m
(
cos
θ
′
)
{
cos
m
ϕ
′
(
ξ
m
+
η
m
)
+
i
sin
m
ϕ
′
(
η
m
−
ξ
m
)
}
z
n
−
m
(
n
+
m
!
)
{\displaystyle {\begin{aligned}{\frac {1}{r'^{n}}}(xx'+yy'+zz')^{n}=z^{n}P_{n}^{m}(\cos \theta ')+n!\sum _{1}^{n}&P_{n}^{m}(\cos \theta ')\{\cos m\phi '(\xi ^{m}+\eta ^{m})\\&+i\sin m\phi '(\eta ^{m}-\xi ^{m})\}{\frac {z^{n-m}}{(n+m!)}}\end{aligned}}}
In this result, change x , y , z into
∂
∂
x
,
∂
∂
y
,
∂
∂
z
{\displaystyle {\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}}