20 × 25; medium, 19 × 24; demy, 1712 × 2212; double crown, 20 × 30;
double foolscap, 17 × 27; post, 1534 × 1912. Hence to say merely
that a book is a quarto gives no precise indication of its dimensions, as a quarto of one size of paper may be smaller than an octavo of another; it is also necessary to know the size of the sheets of which it is composed.
When a printed book is opened, it will be found that at the foot of certain pages there is usually a letter and at the foot of another a letter and a figure, as B, B 2; farther on another letter and another letter and figure. On going through the book it will be seen that the letters are in regular alphabetical order, and occur at regular intervals of eight, twelve, sixteen, &c., pages. Signatures. These designate the several sheets of which the book is composed and are called signatures, so that a sheet may be designated B, and the pages of which it consists are thereby sufficiently indicated. (Occasionally, numbers are used instead of letters.) These signatures assist the binder in folding, as they occupy a certain specified place in each sheet; hence to ascertain if the sheet has been folded properly it is only necessary to examine the position of the signature. The binder also is thus assisted in gathering or collating together the sheets of a volume in proper order. Signature A is omitted, because it would be on the title or first page, and would be both unnecessary and unsightly. By old custom J, V and W are discarded, I and J, U and V being originally used indiscriminately, by printers, while W was written UU or VV. When the alphabet is exhausted, a new one is begun, distinguished by a figure precedent, as 2 B, 2 C, &c.
The pages of types are arranged in proper order on a flat table, covered with stone or metal, called the imposing stone, and are then ready to be made into a forme, that is, into such a state that they can be securely fastened up and moved about. The forme is enclosed in an iron frame or chase, sub-divided by a cross bar. The portions of the type are separated by furniture, Forme. which may be of metal or wood or both. It is of the same height as the chase, but lower than the type, and therefore does not print, but forms the margin of the printed pages. As the sides of the two sections of the formes are pieces of furniture of a tapering shape, called side-sticks, and at the top and bottom corresponding pieces, called foot-sticks. Small wedges, called quoins, are inserted and driven forward by a mallet and a shooting-stick, so that they gradually exert increasing pressure upon the type. Other mechanical means for locking up are also occasionally adopted. When sufficiently locked up, the whole is quite as firm and portable, however many thousands of pieces of metal it may consist of, as if it were a single plate, and is ready for use on the printing press, either directly or in the form of a stereotyped or electrotyped copy.
After use the type undergoes the operation of distributing, which is the converse of composing; it is de-composing the forme and returning the several letters to their proper boxes in the case. The forme is first washed over with an alkali or other detergent to remove the ink from its surface, and then laid down on the imposing surface, unlocked and damped; this Distributing. assists the cohesion of the type, after the chase, furniture, side sticks, &c., are removed. The compositor then takes in his left hand, supported by a setting rule, a portion of type in lines, and with the right hand takes a word or so between the finger and thumb, letting each letter drop separately into its proper box. The types are held upside down, that is, with the nicks uppermost; hence the letters of each word are read from left to right like ordinary matter when printed, but the words are of course dealt with in the inverse order.
Type-setting by Machine.—The above method of producing a printing surface depends entirely upon hand labour, but it has long been an object of inventors in connexion with printing to perfect a mechanical system by which hand-work may be done away with both in setting type and in distributing it after use. The first step in this direction was the construction of composing machines in which the compositor put together types in the required order, not by lifting them one after another from his “boxes” and placing them by hand in his “stick,” but by operating a keyboard which liberated them from magazines and assembled them in the order in which the keys had been struck. Such machines were followed as a natural correlative by distributing machines which performed the converse operation. Then the idea occurred of avoiding distribution altogether, by returning the printing surface to the melting-pot and using the metal over again to produce an entirely new printing surface as required, instead of sorting the types into their various kinds to be set up again either by hand or by machine. There are two main solutions of this problem. One is to manufacture ordinary movable types at a cost that is less than that of distribution, when it obviously becomes advantageous to treat the formes, after use, as old metal and return them directly to the melting pot without distribution. In 1900 The Times began to adopt this method, thus securing the advantage of fresh new type for each issue. In its offices for several years type made by the Wicks casting machine was set up by composing machines, and after being used in making the necessary stereotype plates was returned to the foundry to be melted and recast. The other solution depends upon the employment of apparatus which are in effect combinations of type-setting and type-casting machines, and may be divided into two broad classes: (a) those in which, by the operation of a keyboard, letters are translated into metal types which appear as a product for use in the printing-press, not singly, but cast into complete bars or lines of type; and (b) those in which the final product is separate types, delivered made up into lines of the required length. The former class is exemplified by the Linotype, the Typograph, and the Monoline machines, the latter by the Lanston Monotype, the Tachytype and the Goodson. In machines of the Linotype class, which have come into extensive use, especially for newspaper printing, it is impossible to make corrections or alterations in the line of type after it has been cast. The smallest change, such as the addition of a comma, involves the resetting and recasting of a whole line, while, if two or three words have to be added or removed, the compositor may have to recast a considerable number of lines perhaps a whole paragraph. Machines of the second class, like the Monotype, which has been employed for setting up the present edition of the Encyclopaedia Britannica, appeal rather to the book printer, though the Monotype is used by such newspapers as The Times (London) and the Sun (New York). They have the advantage that corrections can be made as with hand-set type; but for newspaper work the fact that the manipulation of the keyboard does not, as with the Linotype, directly produce a printing surface but merely a punched strip of paper, which has then to be passed through a separate casting machine, inevitably introduces some delay. This is a matter that must be taken into account in the hurried conditions under which a daily paper is produced, when the shortest possible interval must elapse between the time when the latest news is received and the actual printing is begun. A machine invented by Mr H. Gilbert-Stringer is designed to combine the advantages of the Linotype and Monotype machines by casting at a single operation separate types properly arranged in lines and uniformly spaced. Up to the point where the matrices are ranged in a line ready for the bar of type to be cast, the mechanism may be identical with that of the Linotype; from that point each matrix is separately pushed into a mould which is automatically varied in size to suit the size of the particular letter it is casting, and also casts the spaces between the words (determined by the use of a modified Schuckers wedge-space), so that when all the individual types and spaces in the line are assembled after casting they exactly fill the line. The machine requires only one operator, and while one line is being cast the matrices which have formed the preceding one are being distributed to the magazine, as in the Linotype, and the following one is being set up. The matrices differ from those of the Linotype in that the face is impressed on their broad flat surface, not on the thin edge.
Composing Machines.—An early attempt to make a machine for setting up ordinary foundry type was patented in England by Dr William Church in 1822. In the machine of Young and Delcambre, which was used in London for composing the Family Herald in 1842, and was the forerunner of the Kastenbein machine adopted in The Times office in 1869, the types were arranged in tubes placed either vertically or horizontally, and the lowest or endmost letter was, when wanted, ejected from the tube by a pusher actuated by a finger-key. It then passed down the channels of a guide-plate to a common point, whence it was pushed forward by a reciprocating motion to the line of previously composed matter and divided into lines of the required length. To the same group belong the Fraser machine, the Hattersley and the Empire, also known in America as the Burr. Another group of machines developed from the rotary composer was invented by Alexander Mackie of Warrington in 1871, and used in the office of the Warrington Guardian. In this the types were arranged in vertical tubes round a rotating disk, and the letters were automatically selected by a strip of paper previously punched
with holes through which feelers passed and caused the desired type