Page:EB1911 - Volume 27.djvu/637

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
614
UNITED STATES
[PHYSICAL GEOGRAPHY


still more, it is discontinuous, because of the inclusion of certain belts of weak non-crystalline rock; here the rolling uplands are worn down to lowland belts, the longest of which reaches from the southern corner of New York, across New Jersey, Pennsylvania and Maryland, into central Virginia.

The middle section of the Appalachians is further distinguished from the north-eastern and south-western sections by the Drainage. arrangement of its drainage: its chief rivers rise in the plateau belt and flow across the ridges and valleys of the stratified belt and through the uplands of the crystalline belt to the sea. The rivers which most perfectly exemplify this habit are the Delaware, Susquehanna and Potomac; the Hudson, the north-eastern boundary of the middle section, is peculiar in having headwaters in the Adirondacks as well as in the Catskills (northern part of the plateau); the James, forming the south-western boundary of the section, rises in the inner valleys of the stratified belt, instead of in the plateau. The generally transverse course of these rivers has given rise to the suggestion that they are of antecedent origin; but there are many objections to this over-simple, Gordian explanation. The south-east course of the middle-section rivers is the result of many changes from the initial drainage; the Mesozoic and Tertiary upwarpings were probably very influential in determining the present general courses.

For the most part the rivers follow open valleys along belts of weak strata; but they frequently pass through sharp-cut notches in the narrow ridges of the stratified belt—the Delaware water-gap is one of the deepest of these notches; and in the harder rocks of the crystalline belt they have eroded steep-walled gorges, of which the finest is that of the Hudson, because of the greater height and breadth of the crystalline highlands there than at points where the other rivers cross it. The rivers are shallow and more or less broken by rapids in the notches; rapids occur also near the outer border of the crystalline belt, as if the rivers there had been lately incited to downward erosion by an uplift of the region, and had not yet had time to regrade their courses. This is well shown in the falls of the Potomac a few miles above Washington; in the rapids of the lower Susquehanna; and in the falls of the Schuylkill, a branch which joins the Delaware at Philadelphia, where the water-power has long been used in extensive factories. Hence rivers in the Appalachians are not navigable; it is only farther down-stream, w ere the rivers have been converted into estuaries and bays—such as Chesapeake and Delaware bays—by a slight depression of the coastal plain belt, that they serve the purposes of navigation. But the Hudson is strikingly exceptional in this respect; it possesses a deep and navigable tide-water channel all through its gorge in the highlands, a feature which has usually been explained as the result of depression of the land, but may also be explained by glacial erosion without change of land-level; a feature which, in connexion with the Mohawk Valley, has been absolutely determinative of the metropolitan rank reached by New York City at the Hudson mouth.

The community of characteristics that is suggested by the association of six north-eastern states under the name “New England” The North-eastern Appalachians. is in large measure warranted by the inclusion of all these states within the broadened crystalline belt of the north-eastern Appalachians, which is here 150 m. wide. The uplands which prevail through the centre of this area at altitudes of about 1000 ft. rise to 1500 or 2000 ft. in the north-west, before descent is made to the lowlands of the stratified belt (St Lawrence-Champlain-Hudson valleys, described later on as part of the Great Appalachian valley), and at the same time the rising uplands are diversified with monadnocks of increasing number and height and by mature valleys cut to greater and greater depths; thus the interior of New England is moderately mountainous. When the central uplands are followed south-east or south to the coast, their altitude and their relief over the valleys gradually decrease; and thus the surface gradually passes under the sea. The lower coastal parts, from their accessibility and their smaller relief, are more densely populated; the higher and more rugged interior is still largely forested and thinly settled; there are large tracts of unbroken forest in northern Maine, hardly 150 m. from the coast. In spite of these contrasts, no physiographic line can be drawn between the higher and more rugged interior and the lower coastal border; one merges into the other. New England is a unit, though a diversified unit.

The Appalachian trends (N.E.-S.W.) that are so prominent in the stratified belt of the middle Appalachians, and are fairly well marked in the crystalline belt of New Jersey and Pennsylvania, are prevailingly absent in New England. They may be seen on the western border, in the Hoosac range along the boundary of Massachusetts and New York; in the linear series of the Green Mountain summits (Mt Mansfield, 4364 ft., Killington Peak, 4241 ft.) and their (west) piedmont ridges farther north in Vermont; and in the ridges of northern Maine: these are all in sympathy with Appalachian structure; so also are certain open valleys, as the Berkshire (limestone) Valley in western Massachusetts and the corresponding Rutland (limestone and marble) Valley in western Vermont; and more particularly the long Connecticut Valley from northern New Hampshire across Massachusetts to the sea at the southern border of Connecticut, the populous southern third of which is broadly eroded along a belt of red Triassic sandstones with trap ridges. But in general the dissection of the New England upland is as irregular as is the distribution of the surmounting monadnocks. The type of this class of forms is Mt Monadnock in south-western New Hampshire, a fine example of an isolated residual mass rising from an upland some 1500 ft. in altitude and reaching a summit height of 3186 ft. A still larger example is seen in Mt Katahdin (5200 ft.) in north-central Maine, the greatest of several similar isolated mountains that are scattered over the interior uplands without apparent system. The White Mountains of northern New Hampshire may be treated as a complex group of monadnocks, all of subdued forms, except for a few cliffs at the head of cirque-like valleys, with Mt Washington, the highest of the dome-like or low pyramidal summits, reaching 6293 ft., and thirteen other summits over 5000 ft. The absence of range-like continuity is here emphasized by the occurrence of several low passes or “notches” leading directly through the group; the best-known being Crawford's Notch (1900 ft.).

In consequence of the general south-eastward slope of the highlands and uplands of New England, the divide between the Atlantic Drainage. rivers and those which flow northward and westward into the lowland of the stratified belt in Canada and New York is generally close to the boundary of these two physiographic districts. The chief rivers all flow south or south-east; they are the Connecticut, Merrimack, Kennebec, Penobscot and St John, the last being shared with the province of New Brunswick.

The drainage of New England is unlike that of the middle and south-western Appalachians in the occurrence of numerous lakes and falls. These irregular features are wanting south of the limits of Pleistocene glaciation; there the rivers have had time, in the latest cycle of erosion into which they have entered, to establish themselves in a continuous flow, and as a rule to wear down their courses to a smoothly graded slope. In New England also a well established drainage undoubtedly prevailed in preglacial times; but partly in consequence of the irregular scouring of the rock floor, and even more because of the very irregular deposition of unstratified and stratified drift in the valleys, the drainage is now in great disorder. Many lakes of moderate size and irregular outline have been formed where drift deposits formed barriers across former river courses; the lake outlets are more or less displaced from former river paths. Smaller lakes were formed by the deposition of washed drift around the longest-lasting ice remnants; when the ice finally melted away, the hollows that it left came to be occupied by ponds and lakes. In Maine lakes of both classes are numerous; the largest is Moosehead Lake, about 35 m. long and of a very irregular shore line.

The features of a coast can be appreciated only when it is perceived that they result from the descent of the land surface beneath the Coast. sea and from the work of the sea, upon the shore line thus determined; and it is for this reason that throughout this article the coastal features are described in connexion with the districts of which they are the border. The maturely dissected and recently glaciated uplands of New England are now somewhat depressed with respect to sea-level, so that the sea enters the valleys, forming bays and estuaries, while the interfluve uplands and hills stand forth in headlands and islands. Narragansett Bay, with the associated headlands and islands on the south coast, is one of the best examples. Where drift deposits border the sea, the shore line has been cut back or built forward in beaches of submature expression, often enclosing extensive tidal marshes; but the great part of the shore line is rocky, and there the change from initial pattern due to submergence is as yet small. Hence the coast as a whole is irregular, with numerous embayments, peninsulas and islands; and in Maine this irregularity reaches a disadvantageous climax.

As in the north-east, so in the south-west, the crystalline belt widens and gains in height; but while New England is an indivisible The South-western Appalachians. unit, the southern crystalline belt must be subdivided into a higher mountain belt on the north-west, 60 m. wide where broadest, and a lower piedmont belt on the south-east, 100 m. wide, from southern Virginia to South Carolina. This subdivision is already necessary in Maryland, where the mountain belt is represented by the Blue Ridge, which is rather a narrow upland belt than a ridge proper where the, Potomac cuts across it; while the piedmont belt, relieved by occasional monadnocks, stretches from the eastern base of the Blue Ridge to the coastal plain, into which it merges. Farther south, the mountain belt widens and attains its greatest development, a true highland district, in North Carolina, where it includes several strong mountain groups. Here Mt Mitchell rises to 6711 ft., the highest of the Appalachians, and about thirty other summits exceed 6000 ft., while the valleys are usually at altitudes of about 2000 ft. Although the relief is strong, the mountain forms are rounded rather than rugged; few of the summits deserve or receive the name of peaks; some are called domes, from their broadly rounded tops, others are known as balds, because the widespread forest cover is replaced over their heads by a grassy cap.

The height and massiveness of the mountains decrease to the south-west, where the piedmont belt sweeps westward around them in western Georgia and eastern Alabama, Some of the residual mountains hereabouts are reduced to a mere skeleton or framework by the retrogressive penetration of widening valleys between wasting spurs; the very type of vanishing forms. Certain districts within