in an ordinary full-sized violin about 13 in. The portion of the strings to which the bow is applied lies over the space, measuring about 214 in., between the bridge and the free end of the fingerboard. The strings are manufactured from so-called catgut, made from the intestines of lambs, and range in thickness from the first to the third or D string from ·026 to ·046 in. more or less. The necessary weight is given to the string of lowest pitch, G, without unduly sacrificing its elasticity, by winding a thin gut string with fine silver wire to about the same thickness as the A string.
An ornamental feature characteristic of nearly all violins is the purfling, a very thin slip of wood with margins of ebony or (rarely) whalebone, inlaid in thin strips close to the edge of both plates, and following the entire outline of the instrument. In some instruments, especially of the Brescian school, a double line of purfling was inserted.
The total number of pieces of wood of which the violin is composed amounts to about 70, varying, as the plates are made in one piece or built together, and with the number of sections in which the ribs are put together. Of this number 57 pieces are built into the permanent structure, while 13 may be described as fittings. The whole of the permanent structure is cemented together with glue alone, and it is a striking testimony to the mechanical conditions satisfied by the design, that the instrument built of such slender material withstands without deformation the considerable stresses applied to it. It is worthy of remark that after the lapse of so many years, since it attained perfect musical efficiency, no unessential adjunct has entered into the construction of this instrument. No play of fancy has grafted anything beyond quite minor ornamentation on a work of art distinguished by its simplicity of pure outline and proportion.
The following are the exact principal dimensions of a very fine specimen of Stradivari's work, which has been preserved in perfect condition since the latter end of the 17th century:—
Length of body | = 14 in. full. | |
Width across top | = 6 1116 in. bare. | |
Width across bottom | = 814 in. | |
Height of sides (top) | = 1316 " | |
Height of sides (bottom) | = 1732 " |
The back is in one piece, supplemented a little in width at the lower part, after a common practice of the great makers, and is cut from very handsome wood; the ribs are of the same wood, while the belly is formed of two pieces of soft pine of rather fine and beautifully even grain. The sound-holes, cut with perfect precision, exhibit much grace and freedom of design. The scroll, which is very characteristic of the maker's style and beautifully modelled, harmonizes admirably with the general modelling of the instrument. The model is flatter than in violins of the earlier period, and the design bold, while displaying all Stradivari's microscopic perfection of workmanship. The whole is coated with a very fine orange-redbrown varnish, untouched since it left the maker's hand in 1690, and the only respects in which the instrument has been altered since that date are in the fitting of the longer neck and stronger bass-bar necessitated by the increased compass and raised pitch of modern violin music.
The measurements given above are the same as those of a well-known Stradivari of later date (1714).
The acoustics of the violin are extremely complex, and notwithstanding many investigations by men of science, and the enunciation of some plausible hypotheses with regard to details of its operation as a musical instrument, remain as a whole obscure.Acoustics. So far as the elementary principles which govern its action are concerned, the violin follows familiar laws (see Sound). The different notes of the scale are produced by vibrating strings differing in weight and tension, and varying in length under the hand of the player. The vibrations of the .strings are conveyed through the bridge to the body of the instrument, which fulfils the common function of a resonator in reinforcing the notes initiated by the strings. So far first principles carry us at once. But when we endeavour to elucidate in detail the causes of the peculiar character of tone of the violin family, the great range and variety in that character obtained in different instruments, the extent to which those qualities can be controlled by the bow of the player, and the mode in which they are influenced by minute variations in almost every component part of the instrument, we find ourselves faced by a series of problems which have so far defied any but very partial solution.
The distinctive quality of the musical tones of the violin is generally admitted to be due largely to its richness in the upper harmonic or partial tones superimposed on the fundamental notes produced by the simple vibrations of the strings.
The characteristic tone and its control by the player are undoubtedly conditioned in the first place by the peculiar path of the vibrating string under the action of the rosined bow. This takes the form not of a symmetrical oscillation but of a succession of alternating bound and free movements, as the string adheres to the bow according to the pressure applied and, releasing itself by its elasticity, rebounds.
The lightness of the material of which the strings are made conduces to the production of very high upper partial tones which give brilliancy of sound, while the low elasticity of the gut causes these high constituents to be quickly damped, thus softening the ultimate quality of the note.
In order that the resonating body of the instrument may fulfil its highest purpose in reinforcing the complex vibrations set up by the strings vibrating in the manner above described, not only as a whole, but in the number of related segments whose oscillations determine the upper partial tones, it is essential that the plates, and consequently the body of air contained between them, should respond sensitively to the selective impulses communicated to them. It is the attainment of this perfect selective responsiveness which marks the construction of the best instruments. Many factors contribute to this result. The thickness of the plates in different parts of their areas, the size and form of the interior of the body, the size and shape of the sound-holes through which the vibrations of the contained air are communicated to the external air, and which also influence the nodal points in the belly, according to the number of fibres of the wood cut across, varying with the angle at which the sound-holes cross the grain of the wood. Their position in this respect also affects the width of the central vibrating portion of the belly under the bridge.
All these important factors are influenced by the quality and elasticity of the wood employed.
Much has been written and many speculations have been advanced with regard to the superiority in tone of the old Italian instruments over those of modern construction. This superiority has sometimes been disputed, and, judging from the many examples of second-rate instruments which have survived from the 17th and 18th centuries, it is certain that antiquity alone does not confer upon violins the merits which have frequently been claimed for it. When, however, we compare the comparatively few really fine specimens of the Italian school which have survived in good condition, with the best examples of modern construction in which the proportions of the older masterpieces have been faithfully followed, and in which the most careful workmanship of skilled hands has been embodied, it cannot be denied that the former possess a superiority in the quality of their tone which the musical ear immediately recognizes. After taking into account the practical identity in dimensions and construction between the classical and many of the best modern models, the conclusion suggests itself that the difference must be attributed to the nature of the materials used, or to the method of their employment, as influenced by local conditions and practice. The argument, not infrequently advanced, that the great makers of Italy had special local sources of supply, jealously guarded, for wood with exceptional acoustical properties, can hardly be sustained. Undoubtedly they exercised great care in the selection of sound and handsome wood; but there is evidence that some of the finest wood they used was imported from across the Adriatic in the ordinary course of trade; and the matter was for them, in all probability, largely one of expense. There is good reason to suppose that a far larger choice of equally good material is accessible to modern makers.
There remains the varnish with which the completed instrument is coated. This was an item in the manufacture which received most careful attention at the hands of the great makers, and much importance has been attached to the superiority of their varnish over that used in more recent times—so much so that its composition has been attributed to secret processes known only to themselves. The probability is that they were able to exercise more personal selection of the materials used than has been generally practised by makers dependent upon commercial products under modern conditions, and the general result has been analogous to that seen in the pigments employed by modern painters as compared with those made up for themselves by the old masters who could ensure perfect purity in their ingredients. But that the Italian makers individually or collectively attempted, or were able, to preserve as a secret the composition of the varnish they used is unlikely. Instruments exhibiting similar excellence in this respect were too widespread in their range, both of period and locality, to justify the assumption that the general composition of the finest varnish of the early makers was not a matter of common knowledge in an industry so flourishing as that of violin-making in the 17th and early 18th centuries. The excellence of an instrument in respect of its varnish depended on the quality of the constituent materials, on the proportions in which they were combined, and, perhaps mainly, on the method of its application. The most enduring and perfect varnish used for violins is an oil varnish, and the best results therewith can only be obtained under the most advantageous conditions for the drying processes. In this respect there can be no doubt that the southern climate placed the makers whose work lies in higher latitudes at a disadvantage. In a letter to Galileo in 1638 concerning a violin he had ordered from Cremona, the writer states that