Page:EB1911 - Volume 28.djvu/426

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
408  
WATER SUPPLY
[DISTRIBUTION

important reduction in the chance of pathogenic bacteria passing into the filtered water; but much more must be done than has hitherto in most places been done to ensure the constancy of such a condition before it can be assumed to represent the degree of safety attained. No public supply should be open to any such doubt as ought to, or may, deter people from drinking the water without previous domestic filtration or boiling.

Distribution

The earliest water supplies in Great Britain were generally distributed at low pressure by wooden pipes or stone or brick conduits. For special purposes the Romans introduced cast-lead pipes, but they were regarded as luxuries, not as necessaries, and gave way to cheaper conduits Intermittent supply. made, as pump barrels had long been made, by boring out tree trunks, which are occasionally dug up in a good state of preservation. This use of tree-trunks as pipes is still common in the wooded mountain districts of Europe. Within the 19th century, however, cast iron became general in the case of large towns; but following the precedent inseparable from, the use of weaker conduits, the water was still delivered under very low pressure, rarely more than sufficient to supply taps or tanks near the level of the ground, and generally for only a short period out of each twenty-four hours. On the introduction of the Waterworks Clauses Act 1847, an impetus was given to high-pressure supplies, and the same systems of distributing mains were frequently employed for the purpose; but with few exceptions the water continued to be supplied intermittently, and cisterns or tanks were necessary to store it for use during the periods of intermission. Thus it happened that pipes and joints intended for a low-pressure supply were subjected, not only to high pressure, but to the trying ordeal of suddenly varying pressures. As a rule such pipes were not renewed: the leakage was enormous, and the difficulty was met by the very inefficient method of reducing the period of supply still farther. But even in entirely new distributing systems the network is so extensive, and the number of joints so great, that the aggregate leakage is always considerable; the greatest loss being at the so-called “ferrules” connecting the mains with the house “communication” or “service” pipes, in the lead pipes, and in the household fittings. But a far greater evil than mere loss of water and inconvenience soon proved to be inseparable from intermittent supply. Imagine a hilly town with a high-pressure water supply, the water issuing at numerous points, sometimes only in exceedingly small veins, from the pipes into the sub-soil. In the ordinary course of intermittent supply or for the purpose of repairs, the water is cut off at some point in the main above the leakages; but this does not prevent the continuance of the discharge in the lower part of the town. In the upper part there is consequently a tendency to the formation of a vacuum, and some of the impure sub-soil water near the higher leakages is sucked into the mains, to be mixed with the supply when next turned on. We are indebted to the Local Government Board for having traced to such causes certain epidemics of typhoid, and there can be no manner of doubt that the evil has been very general. It is therefore of supreme importance that the pressure should be constantly maintained, and to that end, in the best-managed waterworks the supply is not now cut off even for the purpose of connecting house-service pipes, an apparatus being employed by which this is done under pressure. Constant pressure being granted, constant leakage is inevitable, and being constant it is not surprising that its total amount often exceeds the aggregate of the much greater, but shorter, draughts of water taken for various household purposes. There is therefore, even in the best cases, a wide field for the conservation and utilization of water hitherto entirely wasted.

Following upon the passing of the Waterworks Clauses Act 1847, a constant supply was attempted in many towns, with the result in some cases that, owing to the enormous loss arising from the prolongation of the period of leakage from a fraction of an hour to twenty-four hours, it was impossible to maintain the supply. Accordingly, in some places large sections of the mains and service pipes were entirely renewed, and the water consumers were put to great expense in Constant supply. changing their fittings to new and no doubt better types, though the old fittings were only in a fraction of the cases actually causing leakage. But whether or not such stringent methods were adopted, it was found necessary to organize a system of house-to-house visitation and constantly recurring inspection. In Manchester this was combined with a most careful examination, at a depôt of the Corporation, of all fittings intended to be used. Searching tests were applied to these fittings, and only those which complied in every respect with the prescribed regulations were stamped Detection of waste. and permitted to be fixed within the limits of the water supply. But this did not obviate the necessity for house-to-house inspection, and although the number of different points at which leakage occurred was still great, it was always small in relation to the number of houses which were necessarily entered by the inspector; moreover, when the best had been done that possibly could be done to suppress leakage due to domestic fittings, the leakage below ground in the mains, ferrules and service pipes still remained, and was often very great. It was clear, therefore, that in its very nature, house-to-house visitation was both wasteful and insufficient, and it remained for Liverpool to correct the difficulty by the application, in 1873, of the “Differentiating waste water meter,” which has since been extensively used for the same purpose in various countries. One such instrument was placed below the roadway upon each main supplying a population of generally between 1000 and 2000 persons.

Its action is based upon the following considerations: When water is passing through a main and supplying nothing but leakage the flow of that water is necessarily uniform, and any instrument which graphically represents that flow as a horizontal line conveys to the mind a full conception of the nature of the flow, and if by the position of that line between the bottom and the top of a diagram the quantity of water (in gallons per hour, for example) is recorded, we have a full statement, not only of the rate of flow, but of its nature. We know, in short, that the water is not being usefully employed. In the actual instrument, the paper diagram is mounted upon a drum caused by clockwork to revolve uniformly, and is ruled with vertical hour lines, and horizontal quantity lines representing gallons per hour. Thus, while nothing but leakage occurs the uniform horizontal line is continued. If now a tap is opened in any house connected with the main, the change of flow in the main will be represented by a vertical change of position of the horizontal line, and when the tap is turned off the pencil will resume its original vertical position, but the paper will have moved like the hands of a clock over the interval during which the tap was left open. If, on the other hand, water is suddenly drawn off from a cistern supplied through a ball-cock, the flow through the ball-cock will be recorded, and will be represented by a sudden rise to a maximum, followed by a gradual decrease as the ball rises and the cistern fills; the result being a curve having its asymptote in the original horizontal line. Now, all the uses of water, of whatever kind they may be, produce some such irregular diagrams as these, which can never be confused with the uniform horizontal line of leakage, but are always superimposed upon it. It is this leakage line that the waterworks engineer uses to ascertain the truth as to the leakage and to assist him in its suppression. In well-equipped waterworks each house service pipe is controlled by a stop-cock accessible from the footpath to the officials of the water authority, and the process of waste detection by this method depends upon the manipulation of such stop-cocks in conjunction with the differentiating meter. As an example of one mode of applying the system, suppose that a night inspector begins work at 11.30 p.m. in a certain district of 2000 persons, the meter of which records at the time a uniform flow of 2000 gallons an hour, showing the not uncommon rate of leakage of 24 gallons per head per day. The inspector proceeds along the footpath from house to house, and outside each house he closes the stop-cock, recording opposite the number of each house the exact time of each such operation. Having arrived at the end of the district he retraces his steps, reopens the whole of the stop-cocks, removes the meter diagram, takes it to the night complaint office, and enters in the “night inspection book” the records he has made. The next morning the diagram and the “night inspection book” are in the hands of the day inspector, who compares them. He finds, for example, from the diagram that the initial leakage of 2000 gallons an hour has in the course of a 41/2 hours’ night inspection fallen to 400 gallons an hour, and that the 1600 gallons an hour is accounted for by