Page:EB1911 - Volume 28.djvu/434

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
416
WATT

genius he had the fullest faith; on the other hand, his substantial means, his enterprise, resolution and business capacity supplied what was wanting to bring the invention to commercial success.

During the next ten years we find Watt assiduously engaged in developing and introducing the engine. Its first and for a time its only application was in pumping; it was at once put to this use in the mines of Cornwall, where Watt was now frequently engaged in superintending the erection of engines. Further inventions were required to lit it for other uses, and these followed in quick succession. Watt's second steam-engine patent is dated 1781. It describes five different methods of converting the reciprocating motion of the piston into motion of rotation, so as to adapt the engine for driving ordinary machinery. The simplest way of doing this, and the means now universally followed, is by a crank and fly-wheel; this had occurred to Watt, but had meanwhile been patented by another, and hence he devised the “sun and planet wheels” and other equivalent contrivances. A third patent, in 1782, contained two new inventions of the first importance. Up to this time the engine had been single-acting; Watt now made it double-acting; that is to say, both ends of the cylinder, instead of only one, were alternately put in communication with the boiler and the condenser. Up to this time also the steam had been admitted from the boiler throughout the whole stroke of the piston; Watt now introduced the system of expansive working, in which the admission valve is closed after a portion only of the stroke is performed, and the steam enclosed in the cylinder is then allowed to expand during the remainder of the stroke, doing additional work upon the piston without making any further demand upon the boiler until the next stroke requires a fresh admission of steam. He calculated that, as the piston advanced after admission had ceased, the pressure of the steam in the cylinder would fall in the same proportion as its volume increased—a law which, although not strictly true, does accord very closely with the actual behaviour of steam expanding in the cylinder of an engine. Recognizing that this would cause a gradual reduction of the force with which the piston pulled or pushed against the beam, Watt devised a number of contrivances for equalizing the effort throughout the stroke. He found, however, that the inertia of the pump-rods in his mine engines, and the fly-wheel in his rotative engines, served to compensate for the inequality of thrust sufficiently to make these contrivances unnecessary. His fourth patent, taken out in 1784, describes the well-known “parallel motion,” an arrangement of links by which the top of the piston-rod is connected to the beam so that it may either pull or push, and is at the same time guided to move in a sensibly straight line. “I have started a new hare,” he writes to Boulton in June of that year; “I have got a glimpse of a method of causing a piston-rod to move up and down perpendicularly by only fixing it to a piece of iron upon the beam, without chains or perpendicular guides or untowardly frictions, arch-heads, or other pieces of clumsiness. I think it a very probable thing to succeed, and one of the most ingenious simple pieces of mechanism I have contrived.”

A still later invention was the throttle-valve and centrifugal governor, by which the speed of rotative engines was automatically controlled. One more item in the list of Watt's contributions to the development of the steam-engine is too important to be passed without mention: the indicator, which draws a diagram of the relation of the steam's pressure to its volume as the stroke proceeds, was first used by Boulton & Watt to measure the work done by their engines, and so to give a basis on which the charges levied from their customers were adjusted. It would be difficult to exaggerate the part which this simple little instrument has played in the evolution of the steam-engine. The eminently philosophic notion of an indicator diagram is fundamental in the theory of thermodynamics; the instrument itself is to the steam engineer what the stethoscope is to the physician, and more, for with it he not only diagnoses the ailments of a faulty machine, whether in one or another of its organs, but gauges its power in health.

The commercial success of the engine was not long in being established. By 1783 all but one of the Newcomen pumping-engines in Cornwall had been displaced by Watt's. The mines were then far from thriving; many were even on the point of being abandoned through the difficulty of dealing with large volumes of water; and Watt's invention, which allowed this to be done at a moderate cost, meant for many of them a new lease of life. His engine used no more than a fourth of the fuel that had formerly been needed to do the same work, and the Soho firm usually claimed by way of royalty a sum equivalent to one-third of the saving—a sum which must have been nearly equal to the cost of the fuel actually consumed. Rival manufacturers came forward, amongst whom Edward Bull and Jonathan Carter Hornblower are the most conspicuous names. They varied the form of the engine, but they could not avoid infringing Watt's patent by the use of a separate condenser. When action was taken against them on that ground, they retaliated by disputing the validity of the fundamental patent of 1769. In the case of Boulton & Walt v. Bull the court was divided on this point, but in an action against Hornblower the patent was definitely affirmed to be valid by a unanimous finding of the Court of King's Bench. This was in 1799, only a year before the monopoly expired, but the decision enabled the firm to claim a large sum as arrears of patent dues. In connexion with these trials Watt himself, as well as his early friends Black and Robison, drew up narratives of the invention of the steam-engine, which are of much interest to the student of its history.[1]

Before Watt's time the steam-engine was exclusively a steam-pump, slow-working, cumbrous and excessively wasteful of fuel. His first patent made it quick in working, powerful and efficient, but still only as a steam-pump. His later inventions adapted it to drive machinery of all kinds, and left it virtually what it is to-day, save in three respects. In respect of mechanical arrangement the modern engine differs from Watt's chiefly in this, that the beam, an indispensable feature in the early pumping-engines, and one which held its place long after the need for it had vanished, has gradually given way to more direct modes of connecting the piston with the crank. Another difference is in the modern use of high-pressure steam. It is remarkable that Watt, notwithstanding the fact that his own invention of expansive working must have opened his eyes to the advantage of high-pressure steam, declined to admit it into his practice. He persisted in the use of pressures that were little if at all above that of the atmosphere. His rivals in Cornwall were not so squeamish. Richard Trevithick ventured as far as 120 ℔ on the square inch, and a curious episode in the history of the steam-engine is an attempt which Boulton & Watt made to have an act of parliament passed forbidding the use of high pressure on the ground that the lives of the public were endangered. The third and only other respect in which a great improvement has been effected is in the introduction of compound expansion. Here, too, one cannot but regret to find the Soho firm hostile, though the necessity of defending their monopoly makes their action natural enough. Hornblower had in fact stumbled on the invention of the compound engine, but as his machine employed Watt's condenser it was suppressed, to be revived after some years by Arthur Woolf (1766-1837). In one of his patents (1784) Watt describes a steam locomotive, but he never prosecuted this, and when William Murdoch, his chief assistant (famous as the inventor of gas-lighting), made experiments on the same lines, Watt gave him little encouragement. The notion then was to use a steam carriage on ordinary roads; its use on railways had not yet been thought of. When that idea took form later in the last years of Watt's life, the old man refused to smile upon his offspring; it is even said that he put a clause in the lease of his house that no steam carriage should on any pretext be allowed to approach it.

On the expiry in 1800 of the act by which the patent of 1769 had been extended. Watt gave up his share in the business of engine-building to his sons, James, who carried it on along with a son of Boulton for many years, and Gregory, who died in 1804. The remainder of his life was quietly spent at Heathfield Hall, his house near Birmingham, where he devoted his time, with scarcely an interruption, to mechanical pursuits. His last work was the invention of machines for copying sculpture--

  1. Another narrative of the utmost interest was written by Watt in 1814 in the form of a footnote to Robison's article “Steam-Engine,” from the fourth edition of the Encyclopaedia Britannica, which Watt revised before it was reprinted in the collected edition of Robison's works. See Robison's Mechanical Philosophy, vol. ii.