be followed by a third passage. On the completion of sizing the
hanlcs are removed either to a drying stove or a drying machine. If
to the former, they are suspended from fixed, horizontal poles in a
specially heated and ventilated chamber. If to the latter, loose
poles containing hanks are dropped into recesses in endless chains,
and slowly carried through a large, heated and ventilated box, being
partially rotated the while. On reaching the front of the box they
are removed, brushed and made up into bundles. After which the
yarn is wound, warped and transferred to a loom beam.
Drawing-in, or entering, is the operation of passing warp threads through the eyes of a shedding harness, in a sequence determined by the nature of the pattern to be produced, and the order of lifting the several parts. It is effected by passing a hook through each harness eye in succession, and each time a thread is placed in the hook by an attendant, it is drawn into an eye by the withdrawal of the hook.
Twisting or looming consists in twisting, between the finger and thumb, the ends of a new warp separately upon those of an old one, the remains of which are still in the eyes of the shedding harness. The twisted portions adhere sufficiently to permit of all being drawn through the eyes simultaneously.
The Power Loom.—Little is known of the attempts made before the beginning of the 17th century to control all parts of a loom from one centre, but it is certain the practical outcome was inconsiderable. In the year 1661, a loom was set up in Danzig, for which a claim was made that it could weave four or six webs at a time without human aid, and be worked night and day; this was probably a ribbon loom. In order to prevent such a machine from injuring the poor people, the authorities in Poland suppressed it, and privately strangled or drowned the inventor. M. de Gennes, a French naval officer, in 1678 invented a machine whose chief features consisted in controlling the healds by cams, the batten bycams and springs and the shuttle by a carrier. From 1678 to 1745 little of importance appears to have been done for the mechanical weaving of broadcloth. But in the last-named year M. Yaucanson constructed a very ingenious, self acting loom, on which the forerunner of the Jacquard machine was mounted; he also adopted de Gennes's shuttle carrier. All early attempts to employ mechanical motive power for weaving failed, largely because inventors did not realize that success could only be reached through revolution. Mechanical preparing and spinning machinery had first to be invented, steam was needed for motive power, and the industry required reorganization, which included the abolition of home labour and the introduction of the factory system.
During the last quarter of the 18th century it was generally believed that, on the expiry of Arkwright's patents, so many spinning mills would be erected as to render iS impossible to consume at home the yarns thus produced, and to export them would destroy the weaving industry. Many manufacturers also maintained it to be impossible to devise machinery which would bring the production of cloth up to that of yarn. It was as a protest against the last-named assertions that Dr Edmund Cartwright, a clergyman of the church of England, turned his attention to mechanical weaying. More fortunate than his predecessors, he attacked the problem after much initial work had been done, especially that relating to mechanical spinning and the factory system, for without these no power loom could succeed. In 1785 Dr Cartwright patented his first power loom, but it proved to be valueless. In the following year, however, he patented another loom which has served as the model for later inventors to work upon. He was conscious that for a mechanically driven loom to become a commercial success, either one person would have to attend several machines, or each machine must have a greater productive capacity than one manually controlled. The thought and ingenuity bestowed by Dr Cartwright upon the realization of his ideal were remarkable. He added parts which no loom, whether worked manually or mechanically, had previously been provided with, namely, a positive let-off motion, warp and weft stop motions, and sizing the warp while the loom was in action. With this machine he commenced, at Doncaster, to manufacture fabrics, and by so doing discovered many of its shortcomings, and these he attempted to remedy: by introducing a crank and eccentrical wheels to actuate the batten differentially; by improving the picking mechanism; by a device for stopping the loom when a shuttle failed to enter a shuttle box; by preventing a shuttle from rebound mg when in a box; and by stretching the cloth with temples that acted automatically. In 1792 Dr Cartwright obtained his last patent for weaving machinery; this provided the loom with multiple shuttle boxes for weaving checks and cross stripes. But all his efforts were unavailing; it became apparent that no mechanism, however perfect, could succeed so long as warps continued to be sized while a oom was stationary. His plans for sizing them while a loom was in operation, and also before being placed in a loom, both failed. Still, provided continuity of action could be attained, the position of the power loom was assuied. and means for the attainment of this end were supplied in 1803, by William Radcliffe, and his assistant Thomas Johnson, by their inventions of the beam warper, and the dressing sizing machine.
For upwards of thirty years the power loom was worked under numerous difficulties; the mechanism was imperfect, as were also organization, and the preparatory processes. Textile workers were unused to automatic machinery, and many who had been accustomed to labour in their own homes refused employment in mills, owing to dislike of the factory system and the long hours of toil which it entailed, that spinners and manufacturers were compelled to procure assistants from workhouses; this rendered mill life more distasteful than it otherwise would have been to hand spinners and weavers. Their resentment led them to destroy machinery, to burn down mills, to ill-use mill workers and to blame the power loom for the distress occasioned by war and political disturbances. Yet improvements in every branch of the textile industry followed each other in quick successions, and the loom slowly assumed its present shape. By using iron instead of wood in its construction, and centring the batten, or slay, below instead of above the warp line, the power loom became more compact than the hand-loom.
Motion is communicated to all the working parts from a main shaft A (fig. 28), upon which two cranks are bent to cause the slay B to oscillate; by toothed wheels this shaft, drives a second shaft, C, at half its own speed. For plain weaving four tappets are fixed upon the second shaft, two, D, for moving the shuttle to and fro, and two others, E, for moving the healds, L, up and down through the medium of treadles M, M. For other schemes of weaving shedding tappets are more numerous, and are either loosely mounted upon the second shaft, or fixed upon a separate one. In either event
Fig. 28—Vertical Section of a Power Loom.
they are driven by additional gearing, for the revolutions of the tappets to those of the crank shaft must be as one is to the number of picks in the repeat of the pattern to be woven. Also, when two or more shuttles are driven successively from the same side of a loom, if the picking tappets rotate with the second shaft, those tappets must be free to slide axially in order to keep one out of action so long as the other is required to act. The warp beam F is often put under the control of chains instead of ropes, as used in hand looms, and the chains are attached to adjust ably weighted levers, G, whereby the effectiveness of the weights may be varied at pleasure. In the manufacture of heavy fabrics, however, it may be necessary to deliver the warp by positive gearing, which is either connected, or otherwise, to the taking-up motion. The cloth is drawn forward regularly as it is manufactured by passing it over the rough surface of a roller, I, and imparting to the roller an intermittent motion each time a pick of weft is beaten home. This motion is derived from the oscillating slay, and is communicated through a train of wheels. The loom is stopped when the weft fails by a fork-and-grid stop motion, which depends for its action on the lightly balanced prongs of a fork, N. These prongs come in contact with the weft, between the selvage of the web and the shuttle box each time the shuttle is shot to the side at which the apparatus is fixed. If the prongs meet no thread they are not depressed, and being unmoved a connexion is formed with a vibrating lever, J; the latter draws the fork forward, and with it a second lever O, by which the loom is stopped. On the other hand, if the prongs are tilted, the loom continues in action. If more than one shuttle is used it may be necessary' to feel for each, instead of alternate threads of weft. In such cases a fork is placed beneath the centre of the cloth and lifted above a moving shuttle' if in falling it meets with weft it is arrested, and the loom continues in motion, but if the weft is absent the prongs fall far enough beneath the