Jump to content

Page:EB1911 - Volume 28.djvu/832

From Wikisource
This page has been proofread, but needs to be validated.
WOOL, WORSTED AND WOOLLEN MANUFACTURES
807

Large quantities of wool also come from the East and from Russia, while even Iceland contributes its quota. It is interesting Wool in other countries. to note that, notwithstanding all the developments instanced, Europe still maintains its supremacy as the chief wool-producing continent, though, as the wool is largely manufactured locally, one hears little of European wools.

The following statistics give an idea of the development of the colonial and foreign wool trade as gauged by the London wool sales:

Bales. 
1814 165
1824 1,620
1834 16,926
1840 44,502
1850 158,558
1870 673,314
1890 1,509,666
1901 1,602,726
1903  1,319,365

It must not be forgotten, however, that a large quantity of S. American, W. Indian, Russian, &c., wools, along with mohair and alpaca, come through Liverpool, and consequently are not taken into account here.

With reference to wools grown in the United Kingdom the truth seems to be that a fine short wool has never been produced. British wools. English wool is known the world over as being of a long and lustrous type, which was doubtless that so much in demand in the middle ages. That it was as long and lustrous as the typical Leicester or Lincoln of to-day is doubtful, as the new Leicester breed of sheep was only fully developed by Mr Bakewell after the year 1747, and the latter day Lincoln was even a later development of a similar character. What the exact type of English wool or wools was prior to the 18th century will probably never be decided, but from the closing years of that century there is no difficulty in being fairly precise. As already remarked, the long and lustrous wools are the typical English, being grown in Lincolnshire, Yorkshire, Nottinghamshire, Devonshire, &c., in fact in all those districts where the pasturage is rich and specially fitted for carrying a heavy sheep. It is claimed that the lustre upon the wool is a direct result of the environment, and that to take a Lincoln sheep into Norfolk means the loss of the lustre. This is partially true, but it is perhaps better to take a larger view and remember that the two influencing factors are race and environment: which is the more potent it is impossible to say. Attempts were made in the 18th century to develop a fine wool breed in England, George IV. importing a number of merino sheep from Spain. The discovery was soon made that it was impossible to maintain a breed of pure merinos in Great Britain, but the final outcome was by no means unsatisfactory. By crossing with the indigenous sheep a race of fairly fine woolled sheep was developed, of which the present day representative is the Southdown—a sheep which feeds naturally on the Downs of Sussex, &c., forming a marked contrast to the artificially turnip-fed Lincoln, Leicester, &c., sheep. Following the short, curly Southdown, but rather longer, come such as the Sussex, Oxford and Hampshire Down sheep; these are followed by such as the Shropshires and Shropshire crosses, Kent and Romney Marsh, until at last the chain from the Southdown to the Lincoln is completed. Of course there are several British wools not included in this chain. Scotch or black-face wool is long and rough, but well adapted for being spun into carpet yarns. Welsh wool has the peculiarity of early attaining its limit of shrinkage when washed, and hence is specially chosen for flannels. Shetland wool is of a soft nature specially suited for knitting yarns, while Cheviot wool—said to be a cross between merino sheep saved from the wreck of the Great Armada and the native Cheviot sheep—has made the reputation of the Scottish manufacturers for tweeds. North wool—wool from an animal of the Border Leicester and Cheviot breed—Ripon, Wensleydale and Teasdale wools are also specially noted as lustre wools, Ripon and Wensleydale wools being, by many judges, considered superior so far as lustre is concerned to Lincoln and Leicester.

Such remarkable advances have been made in the weights of fleeces carried by sheep of particular breeds that it is difficult to say if finality has been reached. The following list gives average weights:

Breed. Weight of
Average Fleece.
Merino (Australian)
Merino (South American)
Merino-Lincoln
Southdown
Lincoln
Shetland
Cashmere
6
8-10
6
12
4
4
 ℔
 ℔
 ℔
 ℔
 ℔
 ℔
 oz.

In 1885 the average weight of wool per sheep per year was about 5 ℔, while 7 to 8 ℔ is now the average weight. Roughly speaking the weights of Australian fleeces are to-day about double as compared with 1885.

The prevailing colour of sheep's wool is white, but there are races with black, brown, fawn, yellow and grey shades of wool. Physical characteristics of wool. For manufacturing purposes generally white wool is, of course, most valuable, but for the homespuns, which in earlier times absorbed the bulk of wool, natural colours were in many cases used with good effect. In domestic spinning, knitting, and weaving, natural colours are still largely taken advantage of, as in the cases of rough yarns, Shetland knitted shawls, Highland tweeds, &c.

As has already been indicated, the distinction between wool and hair lies chiefly in the great fineness, softness, and waved delicacy of woollen fibre, combined with a highly serrated surface. These peculiarities are precisely the characters which give wool its distinctive value as a textile fibre, the most distinctive characteristic of all being the serrated structure which specially belongs to wool and markedly aids the important property of felting, upon which many of its applications depend. The serrations of wool and the wavy structure it assumes are closely connected, those wools which have the greatest number of serrations being usually most finely waved in structure. The appearance presented by wool under the microscope is shown in figs. 1-6 (Plate). Under the influence of moisture and pressure, aided by alkalis or acids, masses of wool thoroughly mat together, by the mutual interlocking of the fibres. It is thus that the shrinking and thickening of woollen textures under washing is accounted for, the capacity of wool cloth for felting or fulling being due to this condition of the fibre, possibly along with a certain shrinkage of the true fibre mass. The serrations are most numerous, acute, pointed and distinct in fine merino wools, as many as 2800 per in. being counted in specimens of the finest Saxony wools. In the Leicester wool of England, on the other hand, which is a long bright staple, the serratures are not only much fewer in number, counting about 1800, but they are also less pronounced in character, so that the fibre presents a smoother, less waved character. In some inferior wools the serrations are not so many as 500 per in. A similar difference may be noted in the fineness of the fibres. The finest wool has a diameter of from 1/2000 to 1/3000 in., whilst coarse Algerian wools may rise to a maximum diameter of about 1/275 in.

Other distinguishing qualities of good wool consist in uniformity and strength of fibre with freedom from tender or weak portions in its length, a condition which not unfrequently arises from ill health in the sheep, or is due to violent climatic changes. In ill-bred wool there may also be found intermingled “kemps” or dead hairs—straight, coarse, dull fibres which show conspicuously among the wool, and become even more prominent in the manufactured and dyed goods, as they will not take dye. Wool also possesses a softness of touch and an elasticity both in the raw and manufactured condition which distinguish it from all other fibres. In length of staple it varies very much, attaining in combing wools to a length of as much as 15 to 20 in.

In dealing with wool from a practical point of view it must be recognized that it is by no means a simple body, but has a Chemical characteristics of wool. somewhat complex physical structure. Its composition in the raw state may be said to be threefold. there is the wool-yolk—what may be termed a natural impurity; the wool-fat, which is not only present in the yolk but also permeates the fibre and seems to give it its plastic and soft handle; and the cell structure proper of the fibre. The natural impurity or wool-yolk is truly a skin product and is a protector of the wool-fibre rather than part of the true fibre substance. The wool-fat also may be regarded as