the difficulties raised by the discovery of irrational quantities, and is of much later date. It seems rather that numbers were originally represented by dots arranged in symmetrical and easily recognised patterns, of which the marking of dice or dominoes gives us the best idea. And these markings are, in fact, the best proof that this is a genuinely primitive method of indicating numbers; for they are of unknown antiquity, and go back to the time when men could only count by arranging numbers in such patterns, each of which became, as it were, a fresh unit.
It is, therefore, significant that we do not find any clue to what Aristotle meant by "those who bring numbers into figures like the triangle and the square" till we come to certain late writers who called themselves Pythagoreans, and revived the study of arithmetic as a science independent of geometry. These men not only abandoned the linear symbolism of Euclid, but also regarded the alphabetical notation, which they did use, as inadequate to represent the true nature of number. Nikomachos of Gerasa says expressly that the letters used to represent numbers are purely conventional.[1] The natural thing would be to represent linear or prime numbers by a row of units, polygonal numbers by units arranged so as to mark out the various plane figures, and solid numbers by units disposed in pyramids and so forth.[2] We therefore find figures like this:
|
|
|
|
|
|
|
- ↑ Nikomachos of Gerasa, Introd. Arithm. p. 83, 12, Hoche, Πρότερον δὲ ἐπιγνωστέον ὅτι ἕκαστον γράμμα ᾧ σημειούμεθα ἀριθμόν, οἷον τὸ ι, ᾧ τὸ δέκα, τὸ κ, ᾧ τὰ εἴκοσι, τὸ ω, ᾧ τα ὀκτακόσια, νόμῳ καὶ συνθήματι ἀνθρωπίνῳ, ἀλλ' οὐ φύσει σημαντικόν ἐστι τοῦ ἀριθμοῦ κτλ. Cf. also Iambl. in Nicom. p. 56, 27, Pistelli, ἰστέον γὰρ ὡς τὸ παλαιὸν φυσικώτερον οἱ πρόσθεν ἐσημαίνοντο τὰς τοῦ ἀριθμοῦ ποσότητας, ἀλλ' οὐχ ὥσπερ οἱ νῦν συμβολικῶς.
- ↑ For the prime or rectilinear numbers, cf. Iambl. in Nicom. p. 26, 25, Pistelli, πρῶτος μὲν οὖν καὶ ἀσύνθετος ἀριθμός ἐστι περισσὸς ὃς ὑπὸ μόνης μονάδος πληρούντως μετρεῖται, οὐκέτι δὲ καὶ ὑπ' ἄλλου τινὸς μέρους, καὶ ἐπὶ μίαν