the icosahedron were discovered by Theaitetos.[1] This sufficiently justifies us in regarding the "fragments of Philolaos" with suspicion, and all the more so as Aristotle does not appear to have seen the work from which these fragments come.[2]
142.The Problem. We must look, then, for other evidence. From what has been said, it will be clear that it is above all from Plato we can learn to regard Pythagoreanism sympathetically. Aristotle was out of sympathy with Pythagorean ways of thinking, but he took great pains to understand them. This was because they played so great a part in the philosophy of Plato and his successors, and he had to make the relation of the two doctrines as clear as he could to himself and his disciples. What we have to do, then, is to interpret what Aristotle tells us in the spirit of Plato, and then to consider how the doctrine we thus arrive at is related to the systems which preceded it. It is a delicate operation, no doubt, but it has been made much safer by recent discoveries in the early history of mathematics and medicine.
- ↑ Heiberg's Euclid, vol. v. p. 654, 1, ἐν τούτῳ τῷ βιβλίῳ, τουτέστι τῷ ιγʹ, γράφεται τὰ λεγόμενα Πλάτωνος ε σχημάτων τῶν Πυθαγορείων ἐστίν, ὅ τε κύβος καὶ ἡ πυραμὶς καὶ τὸ δωδεκάεδρον, Θεαιτήτου δὲ τό τε ὀκτάεδρον καὶ τὸ εἰκοσάεδρον. It is no objection to this that, as Newbold points out (Arch. xix. p. 204), the inscription of the dodecahedron is more difficult than that of the octahedron and icosahedron. We have no right to reject the definite testimony quoted above (no doubt from Eudemos) on grounds of a priori probability. As a matter of fact, there are Celtic and Etruscan dodecahedra of considerable antiquity in the Louvre and elsewhere (G. Loria, Scienze esatte, p. 39), and the fact is significant in view of the connexion between Pythagoreanism and the North which has been suggested.
- ↑ Philolaos is quoted only once in the Aristotelian corpus, in Eth. Eud. B, 8. 1225 a 33 ἀλλ' ὥσπερ Φιλόλαος ἔφη εἶναί τινας λόγους κρείττους ἡμῶν, which looks like an apophthegm. His name is not even mentioned anywhere else, and this would be inconceivable if Aristotle had ever seen a work of his which expounded the Pythagorean system. He must have known the importance of Philolaos from Plato's Phaedo, and would certainly have got hold of his book if it had existed. It should be added that Tannery held the musical theory of our fragments to be too advanced for Philolaos. It must, he argued, be later than Plato and Archytas (Rev. de Phil. xxviii. pp. 233 sqq.). His opinion on such a point is naturally of the greatest weight.