had failed to give any clear account of the relation between these more or less fanciful analogies and their geometrical construction of the universe.
147.The numbers and the elements. We seem to see further that what distinguished the Pythagoreanism of this period from its earlier form was that it sought to adapt itself to the new theory of "elements." This is what makes it necessary to take up the consideration of the system once more in connexion with the pluralists. When the Pythagoreans returned to Southern Italy, they would find views prevalent there which demanded a partial reconstruction of their own system. We do not know that Empedokles founded a philosophical society, but there can be no doubt of his influence on the medical school of these regions; and we also know now that Philolaos played a part in the history of medicine.[1] This gives us the clue to what formerly seemed obscure. The tradition is that the Pythagoreans explained the elements as built up of geometrical figures, a theory we can study for ourselves in the more developed form it attained in Plato's Timaeus.[2] If they were to retain their position as the leaders of medical study in Italy, they were bound to account for the elements.
- ↑ All this has been put in its true light by the publication of the extract from Menon's Ἰατρικά on which see p. 278, n. 4.
- ↑ In Aet. ii. 6, 5 (R. P. 80) the theory is ascribed to Pythagoras, which is an anachronism, as the mention of "elements" shows it must be later than Empedokles. In his extract from the same source, Achilles says οἱ Πυθαγόρειοι which doubtless represents Theophrastos better.
Bonitz) that there is already in that part of the world a number of composite magnitudes (i.e. composed of the Limit and the Unlimited), because those affections (of number) are attached to their respective regions (seeing that they hold these two things), the question arises whether the number which we are to understand each of these things (Opinion, etc.) to be is the same as the number in the world (i.e. the cosmological number) or a different one." I cannot doubt that these are the extended numbers which are composed (συνίσταται) of the elements of number, the limited and the unlimited, or, as Aristotle here says, the "affections of number," the odd and the even. Zeller's view that "celestial bodies" are meant comes near this, but the application is too narrow. Nor is it the number (πλῆθος) of those bodies that is in question, but their magnitude (μέγεθος). For other views of the passage see Zeller, p. 391, n. 1.