everything must be "in" something, or must have something beyond it, had been used against the Parmenidean theory of a finite sphere with nothing outside it.
163.Motion. Zeno's arguments on the subject of motion have been preserved by Aristotle himself. The system of Parmenides made all motion impossible, and his successors had been driven to abandon the monistic hypothesis in order to avoid this very consequence. Zeno does not bring any fresh proofs of the impossibility of motion; all he does is to show that a pluralist theory, such as the Pythagorean, is just as unable to explain it as was that of Parmenides. Looked at in this way, Zeno's arguments are no mere quibbles, but mark a great advance in the conception of quantity. They are as follows
(1) You cannot cross a race-course.[1] You cannot traverse an infinite number of points in a finite time. You must traverse the half of any given distance before you traverse the whole, and the half of that again before you can traverse it. This goes on ad infinitum, so that there are an infinite number of points in any given space, and you cannot touch an infinite number one by one in a finite time.[2]
(2) Achilles will never overtake the tortoise. He must first reach the place from which the tortoise started. By that time the tortoise will have got some way ahead. Achilles must then make up that, and again the tortoise will be ahead. He is always coming nearer, but he never makes up to it.[3]
The "hypothesis" of the second argument is the same as that of the first, namely, that the line is a series of points; but the reasoning is complicated by the introduction of another moving object. The difference, accordingly, is not a half every time, but diminishes in. a constant ratio. Again, the first argument shows that, on this hypothesis, no moving object can ever traverse any distance at all, however fast it