Page:Early Greek philosophy by John Burnet, 3rd edition, 1920.djvu/339

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE YOUNGER ELEATICS
325

proposition;[1] but, of course, his belief was not founded on that. His whole conception of reality made it necessary for him to regard it as eternal.[2] It would be more serious if Aristotle were right in believing, as he seems to have done, that Melissos inferred that what is must be infinite in space, because it had neither beginning nor end in time.[3] As, however, we have the fragment which Aristotle interprets in this way (fr. 2), we are quite entitled to understand it for ourselves, and I cannot see anything to justify Aristotle's assumption that the expression "without limit" means without limit in space.[4]

167.Reality spatially infinite. Melissos did indeed differ from Parmenides in holding that reality was spatially as well as temporally infinite; but he gave an excellent reason for this belief, and had no need to support it by such an extraordinary argument. What he said was that, if it were limited, it would be limited by empty space. This we know from Aristotle himself,[5] and it marks a real advance upon Parmenides. He had thought it possible to regard reality as a finite sphere, but it would have been difficult for him to work out this view in detail. He would have had to say there was nothing outside the sphere; but no one knew better than he that there is no

  1. Arist. Phys. A, 3. 186 a 7 (R. P. 143 a). The false conversion is also mentioned in Soph. El. 168 b 35 (R. P. ib.). So Eudemos ap. Simpl. Phys. p. 105, 24, οὐ γάρ, εἰ τὸ γενόμενον ἀρχὴν ἔχει, τὸ μὴ γενόμενον ἀρχὴν οὐκ ἔχει, μᾶλλον δὲ τὸ μὴ ἔχον ἀρχὴν οὐκ ἐγένετο.
  2. The real reason is given in the paraphrase in Simpl. Phys. p. 103, 21 (R. P. 142 a), συγχωρεῖται γὰρ καὶ τοῦτο ὑπὸ τῶν φυσικῶν, though Melissos himself would not have put it in that way. He regarded himself as a φυσικός like the rest; but, from the time of Aristotle, it was a commonplace that the Eleatics were not φυσικοί, since they denied motion.
  3. Cf. especially Soph. El. 168 b 39, ὡς ἄμφω ταὐτὰ ὄντα τῷ ἀρχὴν ἔχειν, τότε γεγονὸς καὶ τὸ πεπαρασμένον.. The same point is made in 167 b 13 and 181 a 27.
  4. The words ἀλλ' ἄπειρόν ἐστι mean simply "but it is without limit," and this is simply a repetition of the statement that it has no beginning or end. The nature of the limit can only be determined by the context, and accordingly, when Melissos does introduce the subject of spatial infinity, he is careful to say τὸ μέγεθος ἄπειρον (fr. 3).
  5. Arist. Gen. Corr. A, 8. 325 a 14, ἓν καὶ ἀκίνητον τὸ πᾶν εἶναί φασι καὶ ἄπειρον ἔνιοι· τὸ γὰρ πέρας περαίνειν ἂν πρὸς τὸ κενόν. That this refers to Mehssos has been shown by Zeller (p. 612, n. 2).