Page:Eddington A. Space Time and Gravitation. 1920.djvu/153

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
CH. IX]
MOMENTUM AND ENERGY
137

can properly be called a cause. The property is given a name inertia; but it is thought of as an innate tendency in contrast to force which is an active cause. So long as forces are confined to the thrusts and tensions of elementary mechanics, where there is supposed to be direct contact of material, there is good ground for this distinction; we can visualise the active hammering of the molecules on the body, causing it to change its motion. But when force is extended to include the gravitational field the distinction is not so clear.

For our part we deny the distinction in this last case. Gravitational force is not an active agent working against the passive tendency of inertia. Gravitation and inertia are one. The uniform straight track is only relative to some mesh-system, which is assigned by arbitrary convention. We cannot imagine that a body looks round to see who is observing it and then feels an innate tendency to move in that observer's straight line—probably at the same time feeling an active force compelling it to move some other way. If there is anything that can be called an innate tendency it is the tendency to follow what we have called the natural track—the longest track between two points. We might restate the first law of motion in the form "Every body tends to move in the track in which it actually does move, except in so far as it is compelled by material impacts to follow some other track than that in which it would otherwise move." Probably no one will dispute this profound statement!

Whether the natural track is straight or curved, whether the motion is uniform or changing, a cause is in any case required. This cause is in all cases the combined inertia-gravitation. To have given it a name does not excuse us from attempting an explanation of it in due time. Meanwhile this identification of inertia and gravitation as arbitrary components of one property explains why weight is always proportional to inertia. This experimental fact verified to a very high degree of accuracy would otherwise have to be regarded as a remarkable law of nature.

We have learnt that the natural track is the longest track between two points; and since this is the only definable track having an absolute significance in nature, we seem to have a sufficient explanation of why an undisturbed particle must