Page:Eddington A. Space Time and Gravitation. 1920.djvu/221

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
MATHEMATICAL NOTES
205

where is the velocity of the charge in the direction of , the velocity of light, and the square bracket signifies antedated values. To the first order of , the denominator is equal to the present distance , so the expression reduces to in spite of the time of propagation. The foregoing formula for the potential was found by Liénard and Wiechert.

Note 7 (p. 97).

It is found that the following scheme of potentials rigorously satisfies the equations , according to the values of in Note 5, where and is any constant (see Report, § 28). Hence these potentials describe a kind of space-time which can occur in nature referred to a possible mesh-system. If , the potentials reduce to those for flat space-time referred to polar coordinates; and, since in the applications required will always be extremely small, our coordinates can scarcely be distinguished from polar coordinates. We can therefore use the familiar symbols , , , , instead of , , , . It must, however, be remembered that the identification with polar coordinates is only approximate; and, for example, an equally good approximation is obtained if we write , a substitution often used instead of since it has the advantage of making the coordinate-velocity of light more symmetrical.

We next work out analytically all the mechanical and optical properties of this kind of space-time, and find that they agree observationally with those existing round a particle at rest at the origin with gravitational mass . The conclusion is that the gravitational field here described is produced by a particle of mass —or, if preferred, a particle of matter at rest is produced by the kind of space-time here described.

Note 8 (p. 98).

Setting the gravitational constant equal to unity, we have for a circular orbit , so that .