Jump to content

Page:Eddington A. Space Time and Gravitation. 1920.djvu/26

From Wikisource
This page has been proofread, but needs to be validated.
10
PROLOGUE

advantageous. I call the space thus chosen physical space, and its geometry natural geometry, thus admitting that other conventional meanings of space and geometry are possible. If it were only a question of the meaning of space—a rather vague term—these other possibilities might have some advantages. But the meaning assigned to length and distance has to go along with the meaning assigned to space. Now these are quantities which the physicist has been accustomed to measure with great accuracy; and they enter fundamentally into the whole of our experimental knowledge of the world. We have a knowledge of the so-called extent of the stellar universe, which, whatever it may amount to in terms of ultimate reality, is not a mere description of location in a conventional and arbitrary mathematical space. Are we to be robbed of the terms in which we are accustomed to describe that knowledge?

The law of Boyle states that the pressure of a gas is proportional to its density. It is found by experiment that this law is only approximately true. A certain mathematical simplicity would be gained by conventionally redefining pressure in such a way that Boyle's law would be rigorously obeyed. But it would be high-handed to appropriate the word pressure in this way, unless it had been ascertained that the physicist had no further use for it in its original meaning.

Phys. I have one other objection. Apart from measures, we have a general perception of space, and the space we perceive is at least approximately Euclidean.

Rel. Our perceptions are crude measures. It is true that our perception of space is very largely a matter of optical measures with the eyes. If in a strong gravitational field optical and mechanical measures diverged, we should have to make up our minds which was the preferable standard, and afterwards abide by it. So far as we can ascertain, however, they agree in all circumstances, and no such difficulty arises. So, if physical measures give us a non-Euclidean space, the space of perception will be non-Euclidean. If you were transplanted into an extremely intense gravitational field, you would directly perceive the non-Euclidean properties of space.

Phys. Non-Euclidean space seems contrary to reason.

Math. It is not contrary to reason, but contrary to common