Page:Elements of the Differential and Integral Calculus - Granville - Revised.djvu/15

From Wikisource
Jump to navigation Jump to search
This page has been validated.
CONTENTS
ix
  1. SECTIONPAGE
  2. 61.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    65
  3. 62.
    Implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    69
  4. 63.
    Differentiation of implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    69
  5. CHAPTER VI
    SIMPLE APPLICATIONS OF THE DERIVATIVE

  6. 64.
    Direction of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    73
  7. 65.
    Equations of tangent and normal, lengths of subtangent and subnormal. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    76
  8. 66.
    Parametric equations of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    79
  9. 67.
    Angle between the radius vector drawn to a point on a curve and the tangent to the curve at that point
    ................................................................................................................................................................................................................................................................................................................................................................................................
    83
  10. 68.
    Lengths of polar subtangent and polar subnormal
    ................................................................................................................................................................................................................................................................................................................................................................................................
    86
  11. 69.
    Solution of equations having multiple roots
    ................................................................................................................................................................................................................................................................................................................................................................................................
    88
  12. 70.
    Applications of the derivative in mechanics. Velocity
    ................................................................................................................................................................................................................................................................................................................................................................................................
    90
  13. 71.
    Component velocities
    ................................................................................................................................................................................................................................................................................................................................................................................................
    91
  14. 72.
    Acceleration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    92
  15. 73.
    Component accelerations
    ................................................................................................................................................................................................................................................................................................................................................................................................
    93
  16. CHAPTER VII
    SUCCESSIVE DIFFERENTIATION

  17. 74.
    Definition of successive derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    97
  18. 75.
    Notation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    97
  19. 76.
    The derivative
    ................................................................................................................................................................................................................................................................................................................................................................................................
    98
  20. 77.
    Leibnitz's formula for the derivative of a product
    ................................................................................................................................................................................................................................................................................................................................................................................................
    98
  21. 78.
    Successive differentiation of implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    100
  22. CHAPTER VIII
    MAXIMA AND MINIMA. POINTS OF INFLECTION. CURVE TRACING

  23. 79.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    103
  24. 80.
    Increasing and decreasing functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    106
  25. 81.
    Tests for determining when a function is increasing and when decreasing
    ................................................................................................................................................................................................................................................................................................................................................................................................
    108
  26. 82.
    Maximum and minimum values of a function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    109
  27. 83.
    First method for examining a function for maximum and minimum values
    ................................................................................................................................................................................................................................................................................................................................................................................................
    111
  28. 84.
    Second method for examining a function for maximum and minimum values
    ................................................................................................................................................................................................................................................................................................................................................................................................
    112
  29. 85.
    Definition of points of inflection and rule for finding points of inflection
    ................................................................................................................................................................................................................................................................................................................................................................................................
    125
  30. 86.
    Curve tracing
    ................................................................................................................................................................................................................................................................................................................................................................................................
    128