98. Simultaneous change of both independent and dependent variables. It is often desirable to change both variables simultaneously. An important case is that arising in the transformation from rectangular to polar coördinates. Since
x
=
ρ
cos
θ
{\displaystyle x=\rho \cos \theta }
and
y
=
ρ
sin
θ
,
{\displaystyle y=\rho \sin \theta ,}
the equation
f
(
x
,
y
)
=
0
{\displaystyle f(x,y)=0}
becomes by substitution an equation between ρ and θ , defining ρ as a function of θ . Hence ρ, x, y are all functions of θ .
Illustrative Example 1. Transform the formula for the radius of curvature (42 ), §103 ,
(A )
R
=
[
1
+
(
d
y
d
x
)
2
]
3
2
d
2
y
d
x
2
,
{\displaystyle R={\frac {\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{\frac {3}{2}}}{\frac {d^{2}y}{dx^{2}}}},}
into polar coördinates.
Solution. Since in (A ) and (B ) , §97 , t is any variable on which x and y depend, we may in this case let
t
=
θ
{\displaystyle t=\theta }
, giving
(B )
d
y
d
x
=
d
y
d
θ
d
x
d
θ
{\displaystyle {\frac {dy}{dx}}={\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}}
, and
(C )
d
2
y
d
x
2
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
3
{\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{\left({\frac {dx}{d\theta }}\right)^{3}}}}
Substituting (B ) and (C ) in (A ) , we get
R
=
[
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
(
d
x
d
θ
)
2
]
3
2
÷
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
3
{\displaystyle R=\left[{\frac {\left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}}{\left({\frac {dx}{d\theta }}\right)^{2}}}\right]^{\frac {3}{2}}\div {\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{\left({\frac {dx}{d\theta }}\right)^{3}}}}
, or
(D )
R
=
[
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
]
3
2
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
{\displaystyle R={\frac {\left[\left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}\right]^{\frac {3}{2}}}{{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}}}
.
But since
x
=
ρ
cos
θ
{\displaystyle x=\rho \cos \theta }
and
y
=
ρ
sin
θ
{\displaystyle y=\rho \sin \theta }
, we have
d
x
d
θ
=
−
ρ
sin
θ
+
cos
θ
d
ρ
d
θ
{\displaystyle {\frac {dx}{d\theta }}=-\rho \sin \theta +\cos \theta {\frac {d\rho }{d\theta }}}
;
d
y
d
θ
=
ρ
cos
θ
+
sin
θ
d
ρ
d
θ
;
{\displaystyle {\frac {dy}{d\theta }}=\rho \cos \theta +\sin \theta {\frac {d\rho }{d\theta }};}
d
2
x
d
θ
2
=
−
ρ
cos
θ
−
2
cos
θ
d
ρ
d
θ
+
cos
θ
d
2
ρ
d
θ
2
{\displaystyle {\frac {d^{2}x}{d\theta ^{2}}}=-\rho \cos \theta -2\cos \theta {\frac {d\rho }{d\theta }}+\cos \theta {\frac {d^{2}\rho }{d\theta ^{2}}}}
;
d
2
y
d
θ
2
=
−
ρ
sin
θ
+
2
cos
θ
d
ρ
d
θ
+
sin
θ
d
2
ρ
d
θ
2
.
{\displaystyle {\frac {d^{2}y}{d\theta ^{2}}}=-\rho \sin \theta +2\cos \theta {\frac {d\rho }{d\theta }}+\sin \theta {\frac {d^{2}\rho }{d\theta ^{2}}}.}
Substituting these in (D ) and reducing,
R
=
[
ρ
2
+
(
d
ρ
d
θ
)
2
]
3
2
ρ
2
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
{\displaystyle R={\frac {\left[\rho ^{2}+\left({\frac {d\rho }{d\theta }}\right)^{2}\right]^{\frac {3}{2}}}{\rho ^{2}2\left({\frac {d\rho }{d\theta }}\right)^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}}}}
. Ans.