1. Find the radius of curvature for each of the following curves, at the point indicated; draw the curve and the corresponding circle of curvature:
2. Determine the radius of curvature of the curve a 2 y = b x 2 + c x 2 y {\displaystyle a^{2}y=bx^{2}+cx^{2}y} at the origin.
Ans. R = a 2 2 b {\displaystyle R={\frac {a^{2}}{2b}}} .
3. Show that the radius of curvature of the witch y 2 = a 2 ( a − x ) x {\displaystyle y^{2}={\tfrac {a^{2}(a-x)}{x}}} at the vertex is a 2 {\displaystyle {\tfrac {a}{2}}} .
4. Find the radius of curvature of the curve y = log sec x {\displaystyle y=\log \sec x} at the point ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} .
Ans. R = sec x 1 {\displaystyle R=\sec x_{1}} .
5. Find K at any point on the parabola x 1 2 + y 1 2 = a 1 2 {\displaystyle x^{\tfrac {1}{2}}+y^{\tfrac {1}{2}}=a^{\tfrac {1}{2}}} . Ans. K = a 1 2 2 ( x + y ) 3 2 {\displaystyle K={\tfrac {a^{\tfrac {1}{2}}}{2(x+y)^{\tfrac {3}{2}}}}} .
6. Find R at any point on the hypocycloid x 2 3 + y 2 3 = a 2 3 {\displaystyle x^{\frac {2}{3}}+y^{\frac {2}{3}}=a^{\frac {2}{3}}} . Ans. R = 3 ( a x y ) 1 3 {\displaystyle R=3(axy)^{\frac {1}{3}}} .
7. Find R at any point on the cycloid x = r arcvers y r − 2 r y − y 2 {\displaystyle x=r\operatorname {arcvers} {\tfrac {y}{r}}-{\sqrt {2ry-y^{2}}}} . Ans. R = 2 2 r y {\displaystyle R=2{\sqrt {2ry}}} .
Find the radius of curvature of the following curves at any point: