Jump to content

Page:Elements of the Differential and Integral Calculus - Granville - Revised.djvu/200

From Wikisource
This page needs to be proofread.
11. Ans. 18. Ans.
12.   0. 19.  
13.   2. 20.   0.
14.   a. 21.  
15. [n positive.]   0. 22.  
16.   1. 23.  
17.  

115. Evaluation of the indeterminate forms . Given a function of the form

 
In order that the function shall take on one of the above three forms, we must have for a certain value of
  ;
or, ;
or, ,
Let ;
taking the logarithm of both sides,
 
In any of the above cases the logarithm of y (the function) will take on the indeterminate form
 

Evaluating this by the process illustrated in §113 gives the limit of the logarithm of the function. This being equal to the logarithm of the limit of the function, the limit of the function is known.[1]

Illustrative Example 1. Evaluate when .

Solution. This function assumes the indeterminate form for .
Let
then when .
By § 113, when .
  1. Thus, if then .