Let P be the point (x, y, z) on the surface given by the equation
(E)
and let PC and AP be sections made by planes through P parallel to the YOZ- and XOZ-planes respectively. Along the curve AP, y is constant; therefore, from (E), z is an implicit function of x alone, and we have, from (57a),
is used instead of in the first member, since z was originally, from (E), an implicit function of x and y; but (58) is deduced on the hypothesis that y remains constant.
Similarly, the slope at P of the curve PC is
(59)
EXAMPLES
Find the total derivatives, using (51), (52), or (53), in the following six examples:
1.
Ans.
2.
Ans.
3.
4.
5.
6.
Using (55) or (56), find the total differentials in the next eight examples: