2. limit x = ∞ ( x 2 + 2 x 5 − 3 x 2 ) = − 1 3 {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}\left({\frac {x^{2}+2x}{5-3x^{2}}}\right)=-{\frac {1}{3}}}} .
3. limit x = 1 x 2 − 2 x + 5 x 2 + 7 = 1 2 {\displaystyle \scriptscriptstyle {{\underset {x=1}{\operatorname {limit} }}{\frac {x^{2}-2x+5}{x^{2}+7}}={\frac {1}{2}}}} .
4. limit x = 0 3 x 3 + 6 x 2 2 x 4 − 15 x 2 = − 2 5 {\displaystyle \scriptscriptstyle {{\underset {x=0}{\operatorname {limit} }}{\frac {3x^{3}+6x^{2}}{2x^{4}-15x^{2}}}=-{\frac {2}{5}}}} .
5. limit x = − 2 x 2 + 1 x + 3 = 5 {\displaystyle \scriptscriptstyle {{\underset {x=-2}{\operatorname {limit} }}{\frac {x^{2}+1}{x+3}}=5}} .
6. limit h = 0 ( 3 a x 2 − 2 h x + 5 h 2 ) = 3 a x 2 {\displaystyle \scriptscriptstyle {{\underset {h=0}{\operatorname {limit} }}(3ax^{2}-2hx+5h^{2})=3ax^{2}}} .
7. limit x = ∞ ( a x 2 + b x + c ) = ∞ {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}(ax^{2}+bx+c)=\infty }} .
8. limit k = 0 ( x − k ) 2 − 2 k x 3 x ( x + k ) = 1 {\displaystyle \scriptscriptstyle {{\underset {k=0}{\operatorname {limit} }}{\frac {(x-k)^{2}-2kx^{3}}{x(x+k)}}=1}} .
9. limit x = ∞ x 2 + 1 3 x 2 + 2 x − 1 = 1 3 {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}{\frac {x^{2}+1}{3x^{2}+2x-1}}={\frac {1}{3}}}} .
10. limit x = ∞ 3 + 2 x x 2 − 5 x = 0 {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}{\frac {3+2x}{x^{2}-5x}}=0}} .
11. limit α = π 2 cos ( α − a ) cos ( 2 α − a ) = − tan a {\displaystyle \scriptscriptstyle {{\underset {\alpha ={\frac {\pi }{2}}}{\operatorname {limit} }}{\frac {\cos(\alpha -a)}{\cos(2\alpha -a)}}=-\tan a}} .
12. limit x = ∞ a x 2 + b x + c d x 2 + e x + f = a d {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}{\frac {ax^{2}+bx+c}{dx^{2}+ex+f}}={\frac {a}{d}}}} .
13. limit z = 0 a 2 ( e z a + e − z a ) = a {\displaystyle \scriptscriptstyle {{\underset {z=0}{\operatorname {limit} }}{\frac {a}{2}}(e^{\frac {z}{a}}+e^{-{\frac {z}{a}}})=a}} .
14. limit x = 0 2 x 3 + 3 x 2 x 3 = ∞ {\displaystyle \scriptscriptstyle {{\underset {x=0}{\operatorname {limit} }}{\frac {2x^{3}+3x^{2}}{x^{3}}}=\infty }} .
15. limit x = ∞ 5 x 2 − 2 x x = ∞ {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}{\frac {5x^{2}-2x}{x}}=\infty }} .
16. limit y = ∞ y y + 1 = 1 {\displaystyle \scriptscriptstyle {{\underset {y=\infty }{\operatorname {limit} }}{\frac {y}{y+1}}=1}} .
17. limit n = ∞ n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 {\displaystyle \scriptscriptstyle {{\underset {n=\infty }{\operatorname {limit} }}{\frac {n(n+1)}{(n+2)(n+3)}}=1}} .
18. limit s = 1 s 3 − 1 s − 1 = 3 {\displaystyle \scriptscriptstyle {{\underset {s=1}{\operatorname {limit} }}{\frac {s^{3}-1}{s-1}}=3}} .
19. limit h = 0 ( x + h ) n − x n h = n x n − 1 {\displaystyle \scriptscriptstyle {{\underset {h=0}{\operatorname {limit} }}{\frac {(x+h)^{n}-x^{n}}{h}}=nx^{n-1}}} .
20. limit h = 0 [ cos ( θ + h ) sin h h ] = cos θ {\displaystyle \scriptscriptstyle {{\underset {h=0}{\operatorname {limit} }}\left[\cos(\theta +h){\frac {\sin h}{h}}\right]=\cos \theta }} .
21. limit x = ∞ 4 x 2 − x 4 − 3 x 2 = − 4 3 {\displaystyle \scriptscriptstyle {{\underset {x=\infty }{\operatorname {limit} }}{\frac {4x^{2}-x}{4-3x^{2}}}=-{\frac {4}{3}}}} .
22. limit θ = 0 1 − cos θ θ 2 = 1 2 {\displaystyle \scriptscriptstyle {{\underset {\theta =0}{\operatorname {limit} }}{\frac {1-\cos \theta }{\theta ^{2}}}={\frac {1}{2}}}} .
23. limit x = a 1 x − a = − ∞ {\displaystyle \scriptscriptstyle {{\underset {x=a}{\operatorname {limit} }}{\frac {1}{x-a}}=-\infty }} , if x {\displaystyle \scriptscriptstyle {x}} is increasing as it approaches the value a {\displaystyle \scriptscriptstyle {a}} .
24. limit x = a 1 x − a = + ∞ {\displaystyle \scriptscriptstyle {{\underset {x=a}{\operatorname {limit} }}{\frac {1}{x-a}}=+\infty }} , if x {\displaystyle \scriptscriptstyle {x}} is decreasing as it approaches the value a {\displaystyle \scriptscriptstyle {a}} .