Assuming
x
=
10
{\displaystyle \scriptstyle {x=10}}
for the initial value of
x
{\displaystyle \scriptstyle {x}}
fixes
y
=
100
{\displaystyle \scriptstyle {y=100}}
as the initial value of
y
{\displaystyle \scriptstyle {y}}
.
Suppose
x
{\displaystyle \scriptstyle {x}}
increases to
x
{\displaystyle \scriptstyle {x}}
=
12
{\displaystyle \scriptstyle {=12}}
,
that is,
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
=
2
{\displaystyle \scriptstyle {=2}}
;
then
y
{\displaystyle \scriptstyle {y}}
increases to
y
{\displaystyle \scriptstyle {y}}
=
144
{\displaystyle \scriptstyle {=144}}
,
and
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
=
44
{\displaystyle \scriptstyle {=44}}
.
Suppose
x
{\displaystyle \scriptstyle {x}}
decreases to
x
{\displaystyle \scriptstyle {x}}
=
9
{\displaystyle \scriptstyle {=9}}
,
that is,
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
=
−
1
{\displaystyle \scriptstyle {=-1}}
;
then
y
{\displaystyle \scriptstyle {y}}
increases to
y
{\displaystyle \scriptstyle {y}}
=
81
{\displaystyle \scriptstyle {=81}}
,
and
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
=
−
19
{\displaystyle \scriptstyle {=-19}}
.
It may happen that as
x
{\displaystyle \scriptstyle {x}}
increases,
y
{\displaystyle \scriptstyle {y}}
decreases, or the reverse; in either case
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
and
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
will have opposite signs.
It is also clear (as illustrated in the above example) that if
y
=
f
(
x
)
{\displaystyle \scriptstyle {y=f(x)}}
is a continuous function and
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
is decreasing in numerical value, then
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
also decreases in numerical value.
27. Comparison of increments. Consider the function
(A )
y
=
x
2
{\displaystyle \scriptstyle {y=x^{2}}}
.
Assuming a fixed initial value for
x
{\displaystyle \scriptstyle {x}}
, let
x
{\displaystyle \scriptstyle {x}}
take on an increment
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
. Then
y
{\displaystyle \scriptstyle {y}}
will take on a corresponding increment
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
, and we have
y
+
{\displaystyle \scriptstyle {y+}}
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
=
(
x
+
Δ
x
)
2
{\displaystyle \scriptstyle {=(x+\Delta x)^{2}}}
,
Subtracting (A)
or,
y
+
{\displaystyle \scriptstyle {y+}}
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
=
x
2
+
2
x
⋅
Δ
x
+
(
Δ
x
)
2
{\displaystyle \scriptstyle {=x^{2}+2x\cdot \Delta x+(\Delta x)^{2}}}
.
Subtracting (A ) ,
y
{\displaystyle \scriptstyle {y}}
=
x
2
{\displaystyle \scriptstyle {=x^{2}}}
(B )
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
=
{\displaystyle \scriptstyle {=}}
x
2
+
{\displaystyle \scriptstyle {x^{2}+}}
2
x
⋅
Δ
x
+
(
Δ
x
)
2
{\displaystyle \scriptstyle {2x\cdot \Delta x+(\Delta x)^{2}}}
we get the increment
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
in terms of
x
{\displaystyle \scriptstyle {x}}
and
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
.
To find the ratio of the increments, divide (B ) by
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
, giving
Δ
y
Δ
x
=
2
x
+
Δ
x
.
{\displaystyle \scriptstyle {{\frac {\Delta y}{\Delta x}}=2x+\Delta x.}}
If the initial value of
x
{\displaystyle \scriptstyle {x}}
is
4
{\displaystyle \scriptstyle {4}}
, it is evident that
limit
Δ
x
=
0
Δ
y
Δ
x
=
8.
{\displaystyle \scriptstyle {{\underset {\Delta x=0}{\operatorname {limit} }}{\frac {\Delta y}{\Delta x}}=8.}}
Let us carefully note the behavior of the ratio of the increments of
x
{\displaystyle \scriptstyle {x}}
and
y
{\displaystyle \scriptstyle {y}}
as the increment of
x
{\displaystyle \scriptstyle {x}}
diminishes.
Initial value of
x
{\displaystyle \scriptstyle {x}}
New value of
x
{\displaystyle \scriptstyle {x}}
Increment
Δ
x
{\displaystyle \scriptstyle {\Delta x}}
Initial value of
y
{\displaystyle \scriptstyle {y}}
New value of
y
{\displaystyle \scriptstyle {y}}
Increment
Δ
y
{\displaystyle \scriptstyle {\Delta y}}
Δ
y
Δ
x
{\displaystyle \scriptstyle {\frac {\Delta y}{\Delta x}}}
4
5.0
1.0
16
25.
9.
9.
4
4.8
0.8
16
23.04
7.04
8.8
4
4.6
0.6
16
21.16
5.16
8.6
4
4.4
0.4
16
19.36
3.36
8.4
4
4.2
0.2
16
17.64
1.64
8.2
4
4.1
0.1
16
16.81
0.81
8.1
4
4.01
0.01
16
16.0801
0.0801
8.01