these lines can be observed with a good microscope. A cube, whose side is the 4000th of a millimetre, may be taken as the minimum visibile for observers of the present day. Such a cube would contain from 60 to 100 million molecules of oxygen or of nitrogen ; but since the molecules of organised substances contain on an average about 50 of the more elementary atoms, we may assume that the smallest organised particle visible under the microscope contains about two million molecules of organic matter. At least half of every living organism consists of water, so that the smallest living being visible under the microscope does not contain more than about a million organic molecules. Some exceedingly simple organism may be supposed built up of not more than a million similar molecules. It is impossible, however, to conceive so small a number sufficient to form a being furnished with a whole system of specialised organs.
Thus molecular science sets us face to face with physiological theories. It forbids the physiologist from imagining that structural details of infinitely small dimensions can furnish an explanation of the infinite variety which exists in the properties and functions of the most minute organisms.
A microscopic germ is, we know, capable of development into a highly organised animal. Another germ, equally microscopic, becomes, when developed, an animal of a totally different kind. Do all the differences, infinite in number, which distinguish becomes, when developed, an animal of a totally different kind. Do all the differences, infinite in number, which distinguish the one animal from the other, arise each from some difference in the structure of the respective germs ? Even if we admit this as possible, we shall be called upon by the advocates of Pangenesis to admit still greater marvels. For the microscopic germ, according to this theory, is no mere individual, but a representative body, containing members collected from every rank of the long-drawn ramification of the ancestral tree, the number of these members being amply sufficient not only to furnish the hereditary characteristics of every organ of the body and every habit of the animal from birth to death, but also to afford a stock of latent gemmules to be passed on in an inactive state from germ to germ, till at last the ancestral peculiarity which it represents is revived in some remote descendant.
Some of the exponents of this theory of heredity have attempted to elude the difficulty of placing a whole world of wonders within a body so small and so devoid of visible structure as a germ, by using the phrase structureless germs.[1] Now, one material system can differ from another only in the configuration and motion which it has at a given instant. To explain differences of function and development of a germ without assuming differences of structure is, therefore, to admit that the properties of a germ are not those of a purely material system.
The evidence as to the nature and motion of molecules, with which we have hitherto been occupied, has been derived from experiments upon gaseous media, the smallest sensible portion of which contains millions of millions of molecules. The constancy and uniformity of the properties of the gaseous medium is the direct result of the inconceivable irregularity of the motion of agitation of its molecules. Any cause which could introduce regularity into the motion of agitation, and marshal the molecules into order and method in their evolutions, might check or even reverse that tendency to diffusion of matter, motion, and energy, which is one of the most invariable phenomena of nature, and to which Thomson has given the name of the dissipation of energy.
Thus, when a sound-wave is passing through a mass of air, this motion is of a certain definite type, and if left to itself the whole motion is passed on to other masses of air, and the sound-wave passes on, leaving the air behind it at rest. Heat, on the other hand, never passes out of a hot body except to enter a colder body, so that the energy of sound-waves, or any other form of energy which is propagated so as to pass wholly out of one portion of the medium and into another, cannot be called heat.
We have now to turn our attention to a class of molecular motions, which are as remarkable for their regularity as the motion of agitation is for its irregularity.
It has been found, by means of the spectroscope, that the light emitted by incandescent substances is different according to their state of condensation. When they are in an extremely rarefied condition the spectrum of their light consists of a set of sharply-defined bright lines. As the substance approaches a denser condition the spectrum tends to become continuous, either by the lines becoming broader and less defined, or by new lines and bands appearing between them, till the spectrum at length loses all its characteristics and becomes identical with that of solid bodies when raised to the same temperature.
Hence the vibrating systems, which are the source of the emitted light, must be vibrating in a different manner in these two cases. When the spectrum consists of a number of bright lines, the motion of the system must be compounded of a corresponding number of types of harmonic vibration.
In order that a bright line may be sharply defined, the vibratory motion which produces it must be kept up in a perfectly regular manner for some hundreds or thousands of vibrations. If the motion of each of the vibrating bodies is kept up only during a small number of vibrations, then, however regular may be the vibrations of each body while it lasts, the resultant disturbance. of the luminiferous medium, when analysed by the prism, will be found to contain, besides the part due to the regular vibrations, other motions, depending on the starting and stopping of each particular vibrating body, which will become manifest as a diffused luminosity scattered over the whole length of the spectrum. A spectrum of bright lines, therefore, indicates that the vibrating bodies when set in motion are allowed to vibrate in accordance with the conditions of their internal structure for some time before they are again interfered with by external forces.
It appears, therefore, from spectroscopic evidence that each molecule of a rarefied gas is, during the greater part of its existence, at such a distance from all other molecules that it executes its vibrations in an undisturbed and regular manner. This is the same conclusion to which we were led by considerations of another kind at p. 39.
We may therefore regard the bright lines in the spectrum of a gas as the result of the vibrations executed by the molecules while describing their free paths. When two molecules separate from one another after an encounter, each of them is in a state of vibration, arising from the unequal action on different parts of the same molecule during the encounter. Hence, though the centre of mass of the molecule describing its free path moves with uniform velocity, the parts of the molecule have a vibratory centre of mass of the molecule describing its free path moves with uniform velocity, the parts of the molecule have a vibratory motion with respect to the centre of mass of the whole molecule, and it is the disturbance of the luminiferous medium communicated to it by the vibrating molecules which constitutes the emitted light.
We may compare the vibrating molecule to a bell. When struck, the bell is set in motion. This motion is compounded of harmonic vibrations of many different periods, each of which acts on the air, producing notes of as many different pitches. As the bell communicates its motion to the air, these vibrations necessarily decay, some
- ↑ See F. Galton, " On Blood Relationship." Proc. Roy. Soc,, June 13, 1872.